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h-STABILITY IN VOLTERRA DIFFERENCE SYSTEMS

Yoon Hoe Goo*, Gyeong In Park**, and Jung Hyun Ko***

Abstract. We investigate h−stability of solutions of nonlinear
Volterra difference systems and linear Volterra difference systems.

1. Introduction

Discrete Volterra systems arise mainly in the process of modeling of
some real phenomena or by applying a numerical method to a Volterra
integral equation. Medina and Pinto [13, 14] introduced the notion of
h−stability which is an important extension of the notion of exponential
asymptotic stability. In the study of the stability properties of difference
systems, the notion of h−stability is very useful because, when we study
the asymptotic stability it is not easy to work with non-exponential
types of stability. For the study of the h−stability for difference sys-
tems, we refer to Choi et al. [2], Medina and Pinto [13]. Also, Choi et
al. [6], Medina and Pinto [14] studied the h−stability for Volterra dif-
ference systems. In this paper, we investigate h−stability of solutions
of nonlinear Volterra difference systems and linear Volterra difference
systems.

2. Preliminaries

We consider the nonlinear Volterra difference system

(2.1) x(n+1) = f(n, x(n))+
n∑

s=n0

g(n, s, x(s)),
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where f : N(n0)× Rm → Rm, g : N(n0)×N(n0)× Rm → Rm, N(n0) =
{n0, n0 + 1, · · · , n0 + k, · · · } (n0 a nonnegative integer), Rm is the m-
dimensional real Euclidean space. We assume that fx = ∂f

∂x and gx = ∂f
∂x

exist and are continuously invertible on N(n0)×Rm, N(n0)×N(n0)×Rm,
respectively. Also, we assume that f(n, 0) = 0 and g(n, s, 0) = 0. Let
x(n, n0, x0) = x0 denote the solution of (2.1) with x(n0, n0, x0) = x0.
Also, we consider the associated variational systems

(2.2) v(n+1) = fx(n, 0)v(n)+
n∑

s=n0

gx(n, s, 0)v(s)

and

(2.3) z(n+1) = fx(n, x(n, n0, x0))z(n)+
n∑

s=n0

gx(n, s, x(s))z(s)

of (2.1). The fundamental matrix Φ(n, n0, 0) of (2.2) is given by

Φ(n, n0, 0) =
∂

∂x0
x(n, n0, 0)

and the fundamental matrix Φ(n, n0, x0) of (2.3) is given by

Φ(n, n0, x0) =
∂

∂x0
x(n, n0, x0)

(See [12]). We now give the main definitions [3, 14] that we need in
the sequel. Let Rm denote the Euclidean m-space. For x ∈ Rm, let
| x |= (

∑m
j=1 x2

j )
1
2 . For an m×m matrix A, define the norm | A | of A

by | A |= sup|x|≤1 | Ax |. Let R+ be the half line [0,∞).

Definition 2.1. The zero solution of (2.1), or more briefly system,
is called h-stable(hS) if there exist c ≥ 1, δ > 0 and a positive bounded
function h : N(n0) → R such that

| x(n, n0, x0) |≤ c | x0 | h(n)h−1(n0)

for n ≥ n0 and | x0 |< δ (here h−1(n) = 1
h(n)), h−stable in variation(hSV )

if the solution of system (2.3) is hS.

Remark 2.2. If h(t) = e−t, then h−stability coincides with expo-
nential stability, and if h(t) is constant, then we have uniform Lipschitz
stability.

For the various definitions of stability, we refer to [15] and we obtain
the following possible implications for system (2.2) among the various
types of stability as in [15]:
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h-stability ⇒ uniform exponential stability
⇒ uniform Lipschitz stability
⇒ uniform stability

The following lemma says that the zero solution of (2.3) is hS if
and only if there exist two constants and a positive bounded function
satisfying some conditions.

Lemma 2.3. [15]. The zero solution of (2.2) is hS if and only if there
exist c ≥ 1 and a positive bounded function h : N(n0) → R such that
for every x0 ∈ Rm

| Φ(n, n0) |≤ ch(n)h−1(n0)

for n ≥ n0 where Φ is a fundamental matrix solution of

Φ(n+1, n0, x0) = A(n)Φ(n, n0, x0)+
n∑

s=n0

B(n, s)Φ(s, n0, x0), n ≥ n0,

with Φ(n0, n0, x0) = I (the identity matrix) and A(n) = fx(n, 0), B(n, s) =
gx(n, s, 0).

In section 3, we use the following equivalent system by M. Zouy-
ousefain and S. Leela [16] to show the h−stability of (2.1). This is a
modification of Theorem 2.1 in [16].

Lemma 2.4. [6]. Assume that (H1) there exists an m × m matrix
function L(n, s) defined on N(n0)×N(n0) satisfying

B(n, s) + L(n, s + 1)A(s)− L(n, s) +
n−1∑
σ=s

L(n, σ + 1)B(σ, s) = 0.

Consider the linear system

(2.4) x(n+1) = A(n)x(n)+
n∑

s=n0

B(n, s)x(s)+f(n), x(n0) = x0,

where A(n) and B(n, s) are m × m matrices for each n, s ∈ N and
f : N(n0) → Rm, n0 ∈ N. Then Equation (2.4) is equivalent to the
linear difference equation

y(n + 1) = C(n)y(n) + L(n, n0)x0 + H(n), y(n0) = x0,

where

C(n) = A(n)− L(n, n) + B(n, n)
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and

H(n) = f(n) +
n−1∑
s=n0

L(n, s + 1)f(s).

The following two theorems are given by S. K. Choi and N. J. Koo [3]
and are concerned with hS.

Theorem 2.5. [3]. If the zero solution of (2.1) is hS, then the zero
solution of (2.2) is also hS.

Theorem 2.6. [3]. If the zero solution of (2.3) is hS, then the zero
solution of (2.1) is also hS.

By Theorems 2.5 and 2.6, we obtain the following corollary.

Corollary 2.7. If the zero solution of (2.3) is hS, then the zero
solution of (2.2) is also hS.

Theorem 2.8. [3]. Assume that the zero solution of (2.2) is hS.
Then the zero solution of (2.3) is also hS under the condition that for
| x |≤ ρ with some ρ > 0,

(i) | fx(n, x)− fx(n, 0) |≤ a(n),

where a : N(n0) → R+,

(ii) | gx(n, s, x)− gx(n, s, 0) |≤ b(n, s),

where b : N(n0)×N(n0) → R+,

(iii) λ(n) = h(n)[h−1(n + 1)a(n) + K] ∈ l1(N(n0)),

and

sups≤σ≤n−1

n−1∑
σ=n0

h−1(σ + 1)b(σ, s) ≤ K,

where K > 0.

By Theorems 2.5 and 2.8, we obtain the following result.

Corollary 2.9. Assume that the zero solution of (2.1) is hS. If the
assumptions (i), (ii) and (iii) of Theorem 2.8 hold for | x |≤ ρ with some
ρ > 0, then the zero solution of (2.1) is also hSV .

Theorem 2.10. [16]. The solution x(n, n0, x0) of (2.4) satisfies the
relation

x(n, n0, x0) = Φ(n, n0)x0 +
n−1∑
s=n0

Φ(n, s + 1)f(n),
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where Φ(n, n0) is the fundamental matrix of the difference equation

x(n + 1) = A(n)x(n) +
n∑

s=n0

B(n, s)x(s)

such that Φ(n0, n0) is the identity matrix.

We need the following difference inequality which comes from the
well-known Bihari-type inequality, to obtain the hS of (3.4).

Lemma 2.11. [4]. Let a(n), b(n) and c(n) be non-negative functions
defined on N(n0) and d be a positive number. If, for n ≥ n0, the
following inequality holds

u(n) ≤ d +
n−1∑
s=n0

a(s)u(s) +
n−1∑
s=n0

b(s)
s−1∑
l=n0

c(l)u(l),

then

u(n) ≤ dexp[
n−1∑
s=n0

(a(s) + b(s)
s−1∑
l=n0

c(l))], n ≥ n0.

Lemma 2.12. [13]. The unique solution y(n, n0, y0) of (2.4) satisfying
y(n0) = y0 is given by

y(n, n0, y0) = R(n, n0)y0 +
n−1∑
s=n0

R(n, s + 1)f(s),

where R(n, m) is the unique solution of the matrix difference equation

(2.5) R(n, m) = R(n, m+1)A(m)+
n−1∑
r=m

R(n, r+1)B(r, m), n−1 ≥ m ≥ n0,

with R(m, m) = I.

Remark 2.13. In the special case when f(n, x) = A(n)x(n) and
g(n, s, x) = B(n, s)x(s) in the nonlinear system (2.1), we note that the
resolvent matrix R(n, m) for equation (2.5) is closely related to the fun-
damental matrix Φ(n, n0). By the uniqueness of solution, it is easy to
see that R(n, n0) = Φ(n, n0).
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3. Main results

In this section, we examine the property of hS for the nonlinear
Volterra difference system (2.1) and the perturbation Volterra differ-
ence system (3.4) of (3.3) using the variation of parameters formula and
Bihari-type inequality.

Theorem 3.1. Suppose that the assumption (H1) of Lemma 2.4 and
all the assumptions (i), (ii) and (iii) of Theorem 2.8 hold. Then the hS
property of the equation

(3.1) p(n, n0, | x0 |) =| Ψ(n, n0) || x0 | +
n−1∑
s=n0

| Ψ(n, s+1) || L(s, n0) || x0 |,

where Ψ(n, s) is the fundamental matrix solution of v(n+1) = C(n)v(n),
implies that the zero solution of (2.1) is hS.

Proof. Set A(n) = fx(n, 0), B(n, s) = gx(n, s, 0) and f(n) ≡ 0. We
consider the equation (2.2). We see, in view of Lemma 2.4, that it is
enough to investigate the equivalent equation with H(n) = 0

(3.2) v(n + 1) = C(n)v(n) + L(n, n0)x0, v(n0) = x0.

By the variation of parameters formula, we have

v(n, n0, x0) = Ψ(n, n0)x0 +
n−1∑
s=n0

Ψ(n, s + 1)L(s, n0)x0.

It then follows from (3.1) that

| v(n) |≤ p(n, n0, | x0 |), n ≥ n0,

Therefore, from the assumption of (3.1), we obtain

| v(n, n0, x0) |≤ c | x0 | h(n)h−1(n0), n ≥ n0,

for some c ≥ 1 and | x0 |< δ. Hence the zero solution of (3.2) is hS
and so is that of (2.2). This, with the assertion of Theorem 2.8, implies
that the zero solution of (2.3) is hS. Hence, by Theorem 2.6, the zero
solution of (2.1) is hS. This completes the proof.

Corollary 3.2. Let the assumptions of Theorem 3.1 hold. Then
the zero solution of (2.1) is also hSV .
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Consider the linear intergo-differential equation of Volterra type

x′ = A(t)x +
∫ t

t0

B(t, s)x(s)ds, x(t0) = x0,

and its perturbation

y′ = A(t)y +
∫ t

t0

B(t, s)y(s)ds + g(t, y), y(t0) = y0.

Corresponding to these Volterra integro-differential equations, we can
consider

(3.3) x(n+1) = A(n)x(n)+
n∑

s=n0

B(n, s)x(s), x(n0) = x0

and its perturbation

(3.4) y(n+1) = A(n)y(n)+
n∑

s=n0

B(n, s)y(s)+g(n, y(n), T y(n)), y(n0) = y0,

where A(n) and B(n, s) are m × m matrices for each n, s ∈ N, g :
N(n0) × Rm × Rm → Rm and T : F (N(n0), Rm) → Rm is an operator
on F (N(n0), Rm) = {y|y : N(n0) → Rm is a sequence}, g(n, 0, 0) = 0.

Using the discrete Bihari-type inequality, we obtain the property of
hS for (3.4).

Theorem 3.3. Suppose that the zero solution x = 0 of (3.3) is hS
with the positive function h(n) and for any n ≥ n0

| g(n, y, Ty) |≤ a(n)(| y(n) | + | Ty(n) |),

where a ∈ F (N(n0), R+). Further suppose that the operator T satisfies
the inequality

| Ty(n) |≤
n−1∑
j=n0

b(j) | y(j) |,

where b ∈ F (N(n0), R+), and

M(n) = exp
[
c1

n−1∑
j=n0

[
h(j)

h(j + 1)
a(j)

(
1 +

1
h(j)

j−1∑
k=n0

h(k)b(k)
)
]
]

< ∞.

Then the zero solution y = 0 of (3.4) is hS.
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Proof. By Lemma 2.12, the solution y(n) of (3.4) is given by

y(n) = R(n, n0)y0 +
n−1∑
j=n0

R(n, j + 1)g(j, y(j), T y(j))

where R(n, m) is the resolvent solution of the matrix difference equation
(2.5). Then, by assumption, we have

| y(n, n0, y0) |≤| R(n, n0) || y0 | +
n−1∑
j=n0

| R(n, j + 1) || g(j, y(j), T y(j)) |

≤ c1h(n)h−1(n0) | y0 | +
n−1∑
j=n0

c1h(n)h−1(j + 1) | g(j, y(j), T y(j)) |

≤ c1h(n)h−1(n0) | y0 | +c1

n−1∑
j=n0

h(n)h−1(j + 1)[a(j)(| y(j) |

+
j−1∑

k=n0

b(k) | y(k) |)].

Putting u(n) =| y(n) | h−1(n), we obtain the following inequality from
Lemma 2.11

u(n) ≤ c1u(n0) + c1

n−1∑
j=n0

[
h(j)

h(j + 1)
a(j)

(
u(j) +

1
h(j)

j−1∑
k=n0

h(k)b(k)u(k)
)
]

≤ c1u(n0)exp[c1

n−1∑
j=n0

[
h(j)

h(j + 1)
a(j)

(
1 +

1
h(j)

j−1∑
k=n0

h(k)b(k)
)
]]

≤ c1u(n0)M(n).

Hence we obtain | y(n) |≤ M | y0 | h(n)h−1(n0), where M = c1M(n) ≥
1, for all n ≥ n0, and the proof is complete.
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