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RELATIVE REGULAR RELATIONS

Jung Ok Yu*

Abstract. In this paper the relative regular relations with respect
to a homomorphism are defined and it will be given the necessary
and sufficient conditions for the relations to be transitive.

1. Introduction

Given a transformation group (X, T ), we may regard T as a set of
self-homomorphisms of X. The enveloping semigroup E(X) of (X, T ) is
defined to be the closure of T in XX , taken with the product topology.
E(X) has both semigroup and transformation group structures, so it
plays an important role to investigate the properties of transformation
group (X, T ).

The notion of proximal relation in transformation group and regular
minimal sets have been strengthened and extended by consideration of
homomorphisms [6]. For a given homomorphism π : X → Y , with Y
minimal and for y ∈ Y , E(π, y) and Pπ(y) have been constructed, which
in some ways generalize the transformation group structure of E(X) and
the proximal relation of X, respectively. The informations about E(π, y)
and Pπ(y) were studied intensively in [6]. The relative regular relations,
as generalized notions of relative proximal relations, were introduced in
[7].

In this paper, we will define relative regular relations with respect to
a homomorphism π : X → Y , which are analogous, but not identical to
those of [7]. The relations are reflexive and symmetric, but are neither
transitive nor closed. The necessary and sufficient conditions for the
relations to be transitive will be given.
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2. Preliminaries

An arbitrary, but fixed, topological group will be denoted by T through-
out this paper and we will consider the transformation group (X,T ) with
a compact Hausdorff space X. The compact Hausdorff space X carries
a natural uniformity U [X] whose indices are the neighborhoods of the
diagonal in X ×X.

A closed nonempty subset A of (X,T ) is called a minimal set if for
every x ∈ A the orbit xT is a dense subset of A. A point whose orbit
closure is a minimal set is called an almost periodic point. If X is itself
minimal, we say that it is a minimal transformation group or a minimal
set.

Let (X, T ) and (Y, T ) be transformation groups. A function π : X →
Y is called a homomorphism if π is continuous and π(xt) = π(x)t (x ∈
X, t ∈ T ). Onto homomorphism is called an epimorphism. A homo-
morphism of X into itself is called an endomorphism and bijective en-
domorphism is called an automorphism of X. We denote the group of
automorphisms of X by A(X).

Definition 2.1. [4] Let (X,T ) be a transformation group. Two
points x and x

′
of X are called proximal provided that for each index

α ∈ U [X], there exists a t ∈ T such that (xt, x
′
t) ∈ α. The set of all

proximal pairs of points is called the proximal relation and is denoted
by P (X, T ) or P (X) .

Definition 2.2. [8] Let (X,T ) be a transformation group. Two
points x and x

′
are said to be regular if h(x) and x

′
are proximal for

some automorphism h of X. This is, (h(x), x
′
) ∈ P (X, T ) for some

h ∈ A(X). The set of all regular pairs of points in X is called the
regular relation and is denoted by R(X, T ) or R(X).

A Minimal transformation group (X, T ) is called regular minimal if
x, y in X, then there is an automorphism h of (X, T ) such that h(x)
and y are proximal.

A Minimal transformation group (M,T ) is said to be universal if
every minimal transformation group with phase group T is a homomor-
phic image of (M, T ). The group of automorphisms of M is denoted by
A(M).

The enveloping semigroup E(X) of X is defined to be the closure of
T in XX , providing XX with its product topology. The minimal right
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ideal I is the nonempty subset of E(X) with IE(X) ⊂ I, which contains
no proper nonempty subset with the same property. Two idempotents
u and v in E(X) are said to be equivalent, writing u ∼ v if uv = u and
vu = v.

Theorem 2.3. [4] Let E(X) be the enveloping semigroup of (X, T ).
Then
(1) The maps θx : E(X) → X defined by θx(p) = xp are homomor-
phisms with range xT for x ∈ X.
(2) Given an epimorphism π : X → Y , there exists a unique epimor-
phism θ : (E(X), T ) → (E(Y ), T ) such that πθx = θπ(x)θ for x ∈ X.
(3) If (X,T ) coincides with (Y, T ), then θ is the identity map.

Let π : X → Y be a fixed homomorphism, with Y minimal. Suppose
y ∈ Y . Then Xπ−1(y) is a transformation group whose elements are
functions from π−1(y) to X.

Definition 2.4. [6] Define zy : π−1(y) → X by zy(x) = x for all
x ∈ π−1(y). Let E(π, y) be the orbit closure of zy. That is, E(π, y) =
zyT ⊂ Xπ−1(y).

Shoenfeld [6] showed that the minimal sets of E(π, y) are isomorphic
and independent of the choice of y.

Definition 2.5. [6] Let π : X → Y be a homomorphism with Y

minimal. Two points x and x
′

are called relatively proximal (to π) if
π(x) = π(x

′
) and (x, x

′
) ∈ P (X). The set of all relatively proximal

pairs is called the relative proximal relation with respect to π and is de-
noted by Pπ(Y ).
In particular, for a fixed y ∈ Y , we define

Pπ(y) = {(x, x
′
) ∈ X ×X | π(x) = π(x

′
) = y and (x, x

′
) ∈ P (X)}

Pπ(Y ) and Pπ(y) are reflexive and symmetric relations, but are nei-
ther transitive nor closed.

Definition 2.6. [7] A homomorphism π : X → Y is called regular if
for each x, x

′
with π(x) = π(x

′
), there exists an automorphism h of X

such that (h(x), x
′
) ∈ P (X) and πh = π.

Theorem 2.7. [6] Let π : X → Y be a homomorphism with Y
minimal
(1) Pπ(y) is an equivalence relation for y ∈ Y if and only if E(π, y)
contains just one minimal set.
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(2) The relative proximal relation Pπ(Y ) is an equivalence relation if
and only if E(π, y) contains just one minimal set, for all y ∈ Y .

3. Relative regular relations

Throughout this section, we will consider the homomorphism π :
X → Y , where Y is a minimal transformation group.

In [7], the relative regular relations Rπ(y) and Rπ(Y ) of a given
π : X → Y were defined as follows. For y ∈ Y ,

Rπ(y) = {(x, x
′
)|π(x) = π(x

′
) = y, (h(x), x

′
) ∈ P (X) for some h ∈ A(X)}

Rπ(Y ) =
⋃{Rπ(y) | y ∈ Y }

Several properties of these relations were studied.
Given a homomorphism π : X → Y , we define

Aut(π) = {h | h is an automorphism of X satisfying π h = π}
Definition 3.1. Let π : X → Y be a homomorphism. π is called a

group extension if whenever x, x
′ ∈ X and π(x) = π(x

′
), there exists an

h ∈ Aut(π) such that h(x) = x
′
.

Now, we will define relative regular relations analogously, but not all
the same to [7].

Definition 3.2. Let π : X → Y be a homomorphism. Two points x
and x

′
in X are relatively regular if π(x) = π(x

′
) and (h(x), x

′
) ∈ P (X)

for some h ∈ Aut(π). The set of all relatively regular pairs is called the
relative regular relation with respect to π and is denoted by Rπ(Y ).
In particular, for a fixed y ∈ Y , we define Rπ(y) to be the set of all
(x, x

′
) ∈ π−1(y) × π−1(y) such that (h(x), x

′
) ∈ P (X) for some h ∈

Aut(π).

Remark 3.3. 1. The followings are obvious from the definitions.
(1) Pπ(y) ⊂ Pπ(Y ) ⊂ P (X) ⊂ R(X)
(2) Pπ(y) ⊂ Rπ(y) ⊂ Rπ(Y ) ⊂ R(X)
(3) Pπ(Y ) ⊂ Rπ(Y )
2. If X is a minimal set and Y is a singleton {y}, then Rπ(Y ) coincides
with R(X).
3. Note that the only automorphism of a proximal transformation group
is the identity. Therefore, Pπ(Y ) coincides with Rπ(Y ) in a proximal
transformation group.
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Note that a homomorphism of minimal sets is a group extension if
and only if it is distal and regular. Therefore, if π : X → Y is a group
extension, then the following are verified easily.
(1) Pπ(y) = {(x, x) | x ∈ π−1(y)} for each y ∈ Y .
(2) Rπ(y) = {(x, x

′
) | π(x) = π(x

′
) = y} for each y ∈ Y .

(3) Pπ(Y ) = {(x, x) | x ∈ X}.
(4) Rπ(Y ) = {(x, x

′
) | π(x) = π(x

′
)}.

Lemma 3.4. Let π : X → Y be a homomorphism and let h ∈ Aut(π).
Then
(1) h−1 ∈ Aut(π)
(2) If (x, x

′
) ∈ Pπ(y), then (h(x), h(x

′
)) ∈ Pπ(y).

Proof. (1) Obvious.
(2) Let (x, x

′
) ∈ Pπ(y) and h ∈ Aut(π). (x, x

′
) ∈ Pπ(y) implies π(x) =

π(x
′
) = y and (x, x

′
) ∈ P (X). Then πh(x) = π(x) = y = π(x

′
) = πh(x

′
)

and (h(x), h(x
′
)) ∈ P (X), because (h(x), h(x

′
)) is the homomorphic

image of proximal pair (x, x
′
). Therefore, (h(x), h(x

′
)) ∈ Pπ(y).

Theorem 3.5. Let π : X → Y be a homomorphism, and let y ∈ Y .
(1) Rπ(Y ) and Rπ(y) are reflexive and symmetric relations.
(2) If E(π, y) contains just one minimal set, then Rπ(y) is an equivalence
relation.
(3) If Pπ(y) (resp. Pπ(Y )) is an equivalence relation, then so is Rπ(y)
(resp. Rπ(Y )).
(4) If Rπ(y) (resp. Rπ(Y )) is closed, then Rπ(y) (resp. Rπ(Y )) is
transitive for y ∈ Y .

Proof. The proofs are similar to those of Lemma 4.7, Theorem 4.8,
Corollary 4.10, Theorem 4.15 in [7], and therefore, we omit the proofs.

Theorem 3.6. Let π : X → Y be a homomorphism with X regular
minimal and Y minimal, and let x, x

′
in X such that π(x) = π(x

′
).

Then (h(x), x
′
) ∈ P (X) for some h ∈ Aut(π).

Proof. Let x, x
′

in X such that π(x) = π(x
′
). Since X is regular

minimal, we can find an h ∈ A(X) such that h(x) and x
′
are proximal

in X. Therefore, h(x)u = x
′
for some minimal idempotent u of E(X).

This implies that

h(xu) = h(x)u = h(x)uu = x
′
u
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and hence

πh(xu) = π(x
′
u) = π(x

′
)θ(u) = π(x)θ(u) = π(xu)

Since Y is minimal, we have πh = π. That is, h ∈ Aut(π). Consequently,
(h(x), x

′
) ∈ P (X) for some h ∈ Aut(π).

Corollary 3.7. Let π : X → Y be a homomorphism with X reg-
ular minimal and Y minimal. Then Rπ(y) and Rπ(Y ) are equivalence
relations.

Proof. It suffices to show that Rπ(Y ) and Rπ(y) are transitive. Con-
sider points x, x

′
, x

′′
in X such that (x, x

′
) ∈ Rπ(Y ) and (x

′
, x

′′
) ∈

Rπ(Y ). Then π(x) = π(x
′
) = π(x

′′
). By Theorem 3.6, we can find an

h ∈ Aut(π) such that (h(x), x
′′
) ∈ P (X), which implies that (x, x

′′
) ∈

Rπ(Y ). Therefore, Rπ(Y ) is transitive. Similarly Rπ(y) is also transi-
tive.

Lemma 3.8. [2] Let (X, T ) be a minimal transformation group and
let γ : M → X and δ : M → X be homomorphisms. Then there exists
α ∈ A(M) such that δ = γα.

Theorem 3.9. Let π : X → Y and γ : M → X be homomorphisms
and let u and v be the equivalent idempotents of E(X) such that yu =
yv = y, and x ∈ π−1(y). Then (xu, xv) ∈ Rπ(y) if and only if there
exist α ∈ A(M) and h ∈ Aut(π) such that hγα = γ, πγα = πγ and
(γα(m), γ(m)) = (xu, xv) for some m ∈ M .

Proof. Suppose first that (xu, xv) ∈ Rπ(y). Then there exists an
h ∈ Aut(π) such that (h(xu), xv) ∈ P (X). By Lemma 3.8, for given
γ : M → X and hγ : M → X, we can find an α ∈ A(M) such that
hγα = γ. Therefore, we also have πγα = πγ, because h ∈ Aut(π). Since
γ is an epimorphism, γ(m) = xv for some m ∈ M . Since (h(xu), xv)
is both proximal and almost periodic pair of points of X, h(xu) = xv.
Since hγα(m) = γ(m) = xv = h(xu) and h is an automorphism, it
follows that γα(m) = xu.
Conversely, suppose that there exist an α ∈ A(M) and an h ∈ Aut(π)
such that hγα = γ, πγα = πγ and (γα(m), γ(m)) = (xu, xv) for some
m ∈ M . Then hγα(m) = γ(m) implies that h(xu) = xv and πγα(m) =
πγ(m) implies that π(xu) = π(xv) = y. Therefore, (xu, xv) ∈ Rπ(y).
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If we take h = 1X , the identity automorphism of X, in the proof of
Theorem 3.9, then the following corollary is immediate.

Corollary 3.10. If the conditions of Theorem 3.9 are fulfilled, then
(xu, xv) ∈ Pπ(y) if and only if there exists an α ∈ A(M) such that
γα = γ, πγα = πγ and (γα(m), γ(m)) = (xu, xv) for some m ∈ M .

Let π : X → Y be a homomorphism and let h ∈ Aut(π). Define

Rh
π(y) = {(x, x

′
) | π(x) = π(x

′
) = y and (h(x), x

′
) ∈ P (X)}

Note that if h = 1X , then Rh
π(y) = Pπ(y).

Theorem 3.11. Let π : X → Y be a homomorphism. Then Pπ(y) is
closed if and only if Rh

π(y) is closed for all h ∈ Aut(π).

Proof. Suppose that Pπ(y) is closed. Let h ∈ Aut(π), and let ((xn, x
′
n))

be a net in Rh
π(y) such that (xn, x

′
n) converges to (x, x

′
). Then (h(xn), x

′
n) ∈

Pπ(y) for all n and (h(xn), x
′
n) converges to (h(x), x

′
). Since Pπ(y) is

closed, (h(x), x
′
) ∈ Pπ(y) and therefore (x, x

′
) ∈ Rh

π(y), which shows
that Rh

π(y) is closed.
Conversely, let Rh

π(y) be closed for all h ∈ Aut(π), and let ((xn, x
′
n)) be a

net in Pπ(y) such that (xn, x
′
n) converges to (x, x

′
). Then h−1 ∈ Aut(π)

and (h−1(xn), x
′
n) ∈ Rh

π(y) for each n and (h−1(xn), x
′
n) converges to

(h−1(x), x
′
). Since Rh

π(y) is closed, (h−1(x), x
′
) ∈ Rh

π(y). This shows
that (x, x

′
) ∈ Pπ(y), and therefore Pπ(y) is closed.

Theorem 3.12. Let π : X → Y be a homomorphism and let y ∈ Y .
The following are equivalent.
(1) Rπ(y) is an equivalence relation.
(2) Let u be an idempotent of E(X) such that yu = y. Then (xu, x

′
u) ∈

Rπ(y) for (x, x
′
) ∈ Rπ(y).

(3) For h, k in Aut(π), there exists l in Aut(π) such that Rh
π(y)◦Rk

π(y) ⊂
Rl

π(y).
(4) Let u and v be the equivalent idempotents of E(X) such that yu =
yv = y. Then (xu, xv) ∈ Rπ(y) for x ∈ π−1(y).
(5) Let u and v be the equivalent idempotents of E(X) such that yu =
yv = y, and x ∈ π−1(y). There exist α ∈ A(M) and h ∈ Aut(π)
such that hγα = γ, πγα = πγ and (γα(m), γ(m)) = (xu, xv) for some
m ∈ M .

Proof. (1) ⇒ (2) Let u2 = u such that yu = y. Since (xu, x), (x, x
′
)

and (x
′
, x

′
u) are in Rπ(y) for (x, x

′
) ∈ Rπ(y) and Rπ(y) is transitive, it

follows that (xu, x
′
u) ∈ Rπ(y) for (x, x

′
) ∈ Rπ(y).
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(2) ⇒ (3) Let h, k in Aut(π) and let (x, x
′
) ∈ Rh

π(y) ◦ Rk
π(y). Then

(x, x
′′
) ∈ Rk

π(y) ⊂ Rπ(y) and (x
′′
, x

′
) ∈ Rh

π(y) ⊂ Rπ(y) for some
x
′′ ∈ π−1(y). By (2), (xu, x

′′
u) ∈ Rπ(y) and (x

′′
u, x

′
u) ∈ Rπ(y), for

idempotent u of E(X) such that yu = y. Therefore,

(φ1(xu), x
′′
u) ∈ P (X) and (φ2(x

′′
u), x

′
u) ∈ P (X)

for some φ1 and φ2 in Aut(π). We also have

(φ2φ1(xu), φ2(x
′′
u)) ∈ P (X)

by Lemma 3.4.(2). Since (φ2φ1(xu), φ2(x
′′
u)) and (φ2(x

′′
u), x

′
u) are

both proximal and almost periodic pairs of points, φ2φ1(xu) = φ2(x
′′
u) =

x
′
u.

Since πφ2φ1(x) = π(x) = π(x
′
) = y and (l(x), x

′
) ∈ P (X) for l = φ2φ1 ∈

Aut(π), it follows that (x, x
′
) ∈ Rl

π(y).
(3) ⇒ (4) Let yu = yv = y and let x ∈ π−1(y). Observe that (xu, x) ∈
Rπ(y), (x, xv) ∈ Rπ(y) and π(xu) = π(xv) = π(x) = y. That is,
(xu, x) ∈ Rk

π(y) and (x, xv) ∈ Rh
π(y) for some h, k in Aut(π). Therefore,

(xu, xv) ∈ Rh
π(y) ◦Rk

π(y). By (3), (xu, xv) ∈ Rl
π(y) for some l ∈ Aut(π).

Consequently, (xu, xv) ∈ Rπ(y).
(4) ⇔ (5) By Theorem 3.9.
(4) ⇒ (1) It suffices to show that Rπ(y) is transitive. Let (x, x

′
) ∈ Rπ(y)

and (x
′
, x

′′
) ∈ Rπ(y). Then (h(x), x

′
) ∈ Pπ(y) and (k(x

′
), x

′′
) ∈ Pπ(y)

for h, k ∈ Aut(π). There exist minimal right ideals I, K of E(X) and
automorphisms h, k in A(X) such that

h(x)p = x
′
p, k(x

′
)q = x

′′
q

for all p ∈ I and q ∈ K. Let u and v be the equivalent idempotents in
I and K such that yu = y = yv. Then

h(x)u = x
′
u, k(x

′
)v = x

′′
v

By hypothesis, we get (x
′
u, x

′
v) ∈ Rπ(y), (x

′′
u, x

′′
v) ∈ Rπ(y). Then

(φ1(x
′
u), x

′
v) ∈ P (X), (φ2(x

′′
u), x

′′
v) ∈ P (X) for some φ1, φ2 in Aut(π).

Since (φ1(x
′
u), x

′
v) and (φ2(x

′′
u), x

′′
v) are both proximal and almost

periodic pair of points, we have

φ1(x
′
u) = x

′
v, φ2(x

′′
u) = x

′′
v

Therefore,
kφ1(x

′
u) = k(x

′
v) = x

′′
v = φ2(x

′′
u)
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Since k(φ1(x
′
))u = kφ1(x

′
u) = kφ1(h(x)u) = kφ1h(x)u and kφ1h(x)u =

kφ1(x
′
u) = k(x

′
v) = x

′′
v = φ2(x

′′
u), we obtain

φ−1
2 kφ1h(x)u = x

′′
u

which shows that (φ−1
2 kφ1h(x), x

′′
) ∈ P (X) and φ−1

2 kφ1h ∈ Aut(π).
That is, (x, x

′′
) ∈ Rπ(y).

Theorem 3.13. Let π : X → Y be a regular homomorphism. Then
Rπ(Y ) and Rπ(y) are closed equivalence relations.

Proof. Let (p, q) be any element of the closure of Rπ(Y ). There exists
a net ((xn, x

′
n)) in Rπ(X) such that (xn, x

′
n) converges to (p, q). Then

(π(xn), π(x
′
n)) converges to (π(p), π(q)). Since (xn, x

′
n) ∈ Rπ(Y ) for all

n, it follows that π(xn) = π(x
′
n) and π(p) = π(q). Since π : X → Y is

a regular homomorphism, there exists h ∈ Aut(π) such that h(p) and
q are proximal, and hence (p, q) ∈ Rπ(Y ). Therefore, Rπ(Y ) is closed.
Similarly Rπ(y) is also closed.

Since a group extension π : X → Y is always regular, we have the
following corollary.

Corollary 3.14. Let π : X → Y be a group extension. Then Rπ(Y )
and Rπ(y) are closed equivalence relations.

Theorem 3.15. Let π : X → Y be a homomorphism with X,Y min-
imal, and suppose that the subspace Aut(π) of XX admits a compact
Hausdorff topology making it a topological group and its action on X
jointly continuous. Then the relative regular relation Rπ(Y ) is closed if
and only if π is represented as a composition of an regular homomor-
phism π1 and a distal homomorphism π2.

Proof. Suppose that the relative regular relation Rπ(Y ) is closed.
Then Rπ(Y ) is an equivalence relation by Theorem 3.5(4). Let π1 :
X → X�Rπ(Y ) be the projection π1(x) = [x], the equivalence class of
x, and π2 : X�Rπ(Y ) → Y the natural correspondence π2([x]) = π(x).
Then π2π1(x) = π2([x]) = π(x) for x ∈ X. Therefore, it follows that
π = π2π1. To show that π1 is a regular homomorphism, let x, x

′ ∈ X
such that π1(x) = π1(x

′
). Then (x, x

′
) is a regular pair and π(x) = π(x

′
).

There exists h ∈ Aut(π) such that (h(x), x
′
) ∈ P (X). Therefore π1 is a

regular homomorphism.
Now, we show that π2 is a distal homomorphism. Suppose that π2(z) =
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π2(z
′
) and (z, z

′
) is a proximal pair. Since π1 is an epimorphism, there

exists a proximal pair (x, x
′
) such that (π1(x), π1(x

′
)) = (z, z

′
). Then

π(x) = π2π1(x) = π2(z) = π2(z
′
) = π2π1(x

′
) = π(x

′
).

Therefore, π1(x) = π1(x
′
) and hence z = z

′
. This shows that π is a

distal homomorphism.
For the converse, suppose that ((xn, x

′
n)) is a net in Rπ(Y ) such

that ((xn, x
′
n)) converges to (x, x

′
). Then for each n, π(xn) = π(x

′
n)

and (hn(xn), x
′
n) ∈ P (X) for some hn ∈ Aut(π). Therefore, π1hn(xn)

and π1(x
′
n) are proximal, and hence regular for each n. Therefore,

π2(π1hn(xn)) = π2(π1(x
′
n)). Since π2 is distal, π1(hn(xn)) = π1(x

′
n). By

the hypothesis of Aut(π), we can assume hn converges to h ∈ Aut(π),
and therefore π1(hn(xn)) converges to π1h(x) = π1(x

′
). Since πhn = π,

πh = π. Therefore, h(x) and x
′

are proximal and hence x and x
′

are
regular. That is, (x, x

′
) ∈ Rπ(Y ).
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