LIGHTLIKE HYPERSURFACES WITH TOTALLY UMBILICAL SCREEN DISTRIBUTIONS

Dae Ho Jin*

ABSTRACT. In this paper, we study the geometry of lightlike hypersurfaces of a semi-Riemannian manifold. We prove a classification theorem for lightlike hypersurfaces M with totally umbilical screen distributions of a semi-Riemannian space form.

1. Introduction

It is well known that the normal bundle TM^{\perp} of the lightlike hypersurfaces (M,g) of a semi-Riemannian manifold (\bar{M},\bar{g}) is a vector subbundle of TM, of rank 1. A complementary vector bundle S(TM) of TM^{\perp} in TM is non-degenerate distribution on M, which called a screen distribution on M, such that

(1.1)
$$TM = TM^{\perp} \oplus_{orth} S(TM),$$

where \oplus_{orth} denotes the orthogonal direct sum. We denote such a lightlike hypersurface by (M, g, S(TM)). Denote by F(M) the algebra of smooth functions on M and by $\Gamma(E)$ the F(M) module of smooth sections of a vector bundle E over M. For any null section ξ of TM^{\perp} on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a unique null section Nof a unique vector bundle tr(TM) in $S(TM)^{\perp}$ [2] satisfying

(1.2)
$$\bar{g}(\xi, N) = 1$$
, $\bar{g}(N, N) = \bar{g}(N, X) = 0$, $\forall X \in \Gamma(S(TM))$.

Then the tangent bundle $T\bar{M}$ of \bar{M} is decomposed as follows:

$$(1.3) \quad T\bar{M} = TM \oplus tr(TM) = \{TM^{\perp} \oplus tr(TM)\} \oplus_{orth} S(TM).$$

We call tr(TM) and N the transversal vector bundle and the null transversal vector field of M with respect to S(TM) respectively.

Received May 25, 2009; Accepted August 14, 2009.

 $^{2000 \ {\}rm Mathematics \ Subject \ Classification: \ Primary \ 53C25, \ 53C40, \ 53C50.}$

Key words and phrases: lightlike hypersurface, totally umbilical screen distribution, semi-Riemannian space form.

The purpose of this paper is to prove a classification theorem for light-like hypersurfaces M of a semi-Riemannian space form $(\bar{M}^{m+2}(c), \bar{g})$, m>2, such that S(TM) is totally umbilical in M. This theorem shows that the local second fundamental forms B and C of such a half light-like submanifold and its screen distribution S(TM) respectively satisfy B=0 or C=0. Using this theorem, we prove several additional theorems for lightlike hypersurfaces M of a semi-Riemannian space form $(\bar{M}^{m+2}(c), \bar{g}), m>2$, such that S(TM) is totally umbilical.

Let ∇ be the Levi-Civita connection of \overline{M} and P the projection morphism of $\Gamma(TM)$ on $\Gamma(S(TM))$ with respect to the decomposition (1.1). Then the local Gauss and Weingartan formulas are given by

$$(1.4) \bar{\nabla}_X Y = \nabla_X Y + B(X, Y) N,$$

$$(1.5) \qquad \bar{\nabla}_X N = -A_N X + \tau(X) N \,,$$

(1.6)
$$\nabla_X PY = \nabla_X^* PY + C(X, PY)\xi,$$

(1.7)
$$\nabla_X \xi = -A_{\xi}^* X - \tau(X) \xi,$$

for any $X, Y \in \Gamma(TM)$, where ∇ and ∇^* are the induced linear connections on TM and S(TM) respectively, B and C are the local second fundamental forms on TM and S(TM) respectively, A_N and A_ξ^* are the shape operators on TM and S(TM) respectively and τ is a 1-form on TM defined by $\tau(X) = \bar{g}(\bar{\nabla}_X N, \xi)$. Since $\bar{\nabla}$ is torsion-free, ∇ is also torsion-free and B is symmetric. From the fact that $B(X,Y) = \bar{g}(\bar{\nabla}_X Y, \xi)$, we know that B is independent of the choice of a screen distribution and satisfies

(1.8)
$$B(X,\xi) = 0, \quad \forall X \in \Gamma(TM).$$

The induced connection ∇ of M is not metric and satisfies

$$(1.9) \qquad (\nabla_X g)(Y, Z) = B(X, Y) \, \eta(Z) + B(X, Z) \, \eta(Y),$$

for any $X, Y, Z \in \Gamma(TM)$, where η is a 1-form such that

(1.10)
$$\eta(X) = \bar{g}(X, N), \quad \forall X \in \Gamma(TM).$$

But ∇^* is metric connection. The above local second fundamental forms B and C of M and on S(TM) are related to their shape operators by

(1.11)
$$B(X,Y) = g(A_{\xi}^*X,Y), \qquad \bar{g}(A_{\xi}^*X,N) = 0,$$

(1.12)
$$C(X, PY) = g(A_N X, PY), \quad \bar{g}(A_N X, N) = 0.$$

From (1.11), A_{ξ}^* is S(TM)-valued and self-adjoint on TM such that

$$A_{\xi}^* \xi = 0.$$

We denote by \bar{R} , R and R^* the curvature tensors of the Levi-Civita connection $\bar{\nabla}$ of \bar{M} , the induced connection ∇ of M and the induced connection ∇^* on S(TM) respectively. Using the Gauss-Weingarten equations for M and S(TM), we obtain the Gauss-Codazzi equations for M and S(TM) such that, for any vector fields $X, Y, Z, W \in \Gamma(TM)$,

$$(1.14) \ \ \bar{g}(\bar{R}(X,Y)Z,PW) = g(R(X,Y)Z,PW) \\ + B(X,Z)C(Y,PW) - B(Y,Z)C(X,PW),$$

$$(1.15) \ \ \bar{g}(\bar{R}(X,Y)Z,\xi) = g(R(X,Y)Z,\xi) \\ = (\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z) \\ + B(Y,Z)\tau(X) - B(X,Z)\tau(Y),$$

$$(1.16) \ \ \bar{g}(\bar{R}(X,Y)Z,N) = g(R(X,Y)Z,N),$$

$$(1.17) \ \ g(R(X,Y)PZ,PW) = g(R^*(X,Y)PZ,PW) \\ + C(X,PZ)B(Y,PW) - C(Y,PZ)B(X,PW),$$

$$(1.18) \ \ g(R(X,Y)PZ,N) = (\nabla_X C)(Y,PZ) - (\nabla_Y C)(X,PZ) \\ + C(X,PZ)\tau(Y) - C(Y,PZ)\tau(X).$$

2. Totally umbilical screen distributions

DEFINITION 2.1. We say that S(TM) is totally umbilical [2] in M if, on any coordinate neighborhood $\mathcal{U} \subset M$, there is a smooth function γ such that $A_NX = \gamma PX$ for any $X \in \Gamma(TM)$, or equivalently,

(2.1)
$$C(X, PY) = \gamma g(X, Y), \ \forall X, Y \in \Gamma(TM).$$

In case $\gamma = 0$ on \mathcal{U} , we say that S(TM) is totally geodesic.

In general, S(TM) is not necessarily integrable. The following result gives equivalent conditions for the integrability of S(TM):

THEOREM 2.2. [2]. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian manifold (\bar{M}, \bar{g}) . Then the following are equivalent:

- (1) S(TM) is integrable.
- (2) C is symmetric on $\Gamma(S(TM))$.
- (3) A_N is self-adjoint on $\Gamma(S(TM))$ with respect to g.

NOTE 2.3. If S(TM) is totally umbilical in M, then the second fundamental form C on S(TM) is symmetric on $\Gamma(S(TM))$. Thus, by Theorem 2.2, S(TM) is integrable and M is locally a product manifold $L \times M^*$, where L is a null curve and M^* is a leaf of S(TM) [2].

Let $\overline{M}(c)$ be a semi-Riemannian space form and S(TM) a totally umbilical distribution of M. Then the equation (1.15) reduces to

$$(2.2) \quad (\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z) = B(X, Z)\tau(Y) - B(Y, Z)\tau(X).$$

Using (1.9), (1.16), (1.18) and (2.1), for any $X, Y, Z \in \Gamma(TM)$, we get

$$\gamma B(Y, PZ)\eta(X) - \{X[\gamma] - \gamma \tau(X) - c\eta(X)\}g(Y, PZ)$$

= $\gamma B(X, PZ)\eta(Y) - \{Y[\gamma] - \gamma \tau(Y) - c\eta(Y)\}g(X, PZ).$

Replacing Y by ξ in this equation and using (1.8), we have

$$(2.3) \quad \gamma B(X,Y) = \{ \xi[\gamma] - \gamma \tau(\xi) - c \} g(X,Y), \quad \forall X, Y \in \Gamma(TM).$$

In the sequel, by a totally umbilical we shall mean a totally umbilical in M unless otherwise specified.

THEOREM 2.4. Let (M, g, S(TM)) be an (m+1)(m > 2)-dimensional lightlike hypersurface of a semi-Riemannian space form $(\bar{M}(c), \bar{g})$ such that S(TM) is totally umbilical. Then C = 0 or B = 0. Moreover,

- (1) C = 0 implies that S(TM) is totally geodesic and c = 0.
- (2) B = 0 implies that M is totally geodesic immersed in $\overline{M}(c)$ and the induced connection ∇ on M is a metric one.

Proof. Assume that $C \neq 0$, i.e., $\gamma \neq 0$. Then, from (2.3), we have

(2.4)
$$B(X,Y) = \beta g(X,Y), \ \forall X, Y \in \Gamma(TM),$$

where $\beta = \gamma^{-1}(\xi[\gamma] - \gamma \tau(\xi) - c)$. Since S(TM) is totally umbilical, M is locally a product manifold $L \times M^*$ where L is a null curve and M^* is a leaf of S(TM). From (1.14), (1.17), (2.1) and (2.4), we have

$$R^{*}(X,Y)Z = (c + 2\beta\gamma)\{g(Y,Z)X - g(X,Z)Y\},\$$

for any $X, Y, Z \in \Gamma(S(TM))$, where R^* is the curvature tensor of M^* . Let Ric^* be the symmetric Ricci tensor of M^* . Then we have

$$Ric^*(X,Y) = (c+2\beta\gamma)(m-1)g(X,Y), \ \forall X, Y \in \Gamma(S(TM)).$$

Thus M^* is an Einstein manifold of constant curvature $(c+2\beta\gamma)$ due to m>2. From (2.3), we have $\xi[\gamma]=\beta\gamma+\gamma\tau(\xi)+c$. Differentiating (2.4) and using (1.9) and (2.2), for all $X,Y,Z\in\Gamma(S(TM))$, we have

(2.5)
$$\{X[\beta] + \beta \tau(X) - \beta^2 \eta(X)\} g(Y, Z)$$

$$= \{Y[\beta] + \beta \tau(Y) - \beta^2 \eta(Y)\} g(X, Z).$$

Replacing X by ξ in this equation, we have $\xi[\beta] = \beta^2 - \beta\tau(\xi)$. Since $(c+2\beta\gamma)$ is a constant, we get $\xi[c+2\beta\gamma] = 2\beta(c+2\beta\gamma) = 0$. Therefore $\beta = 0$ or $c+2\beta\gamma = 0$. If $c+2\beta\gamma = 0$, then M^* is a semi-Euclidean space and the second fundamental form C of M^* satisfies C = 0. It

is a contradiction to $C \neq 0$. Thus we have $\beta = 0$. Consequently, we get B = 0 by (2.4). Thus M is totally geodesic in \overline{M} . Also, from the equation (1.9), we see that $(\nabla_X g)(Y,Z) = 0$ for all $X,Y,Z \in \Gamma(TM)$, that is, the induced connection ∇ on M is a metric one. If C = 0, i.e., $\gamma = 0$, then, by (2.3), we have c = 0. Thus we have our main theorem.

The induced Ricci type tensor $R^{(0,2)}$ of M is defined by

(2.6)
$$R^{(0,2)}(X,Y) = trace\{Z \to R(Z,X)Y\}, \ \forall X, Y \in \Gamma(TM).$$

Consider the induced quasi-orthonormal frame field $\{\xi; W_a\}$ on M such that $Rad(TM) = Span\{\xi\}$ and $S(TM) = Span\{W_a\}$. Using this frame field and the equation (2.6), we obtain

(2.7)
$$R^{(0,2)}(X,Y) = \sum_{a=1}^{m} \epsilon_a g(R(W_a, X)Y, W_a) + \bar{g}(R(\xi, X)Y, N),$$

for any $X, Y \in \Gamma(TM)$ and $\epsilon_a = g(W_a, W_a)$. In general, the induced Ricci type tensor $R^{(0,2)}$, defined by the method of the geometry of the non-degenerate submanifolds [7], is not symmetric [2, 3, 4]. Hence we need the following definition: A tensor field $R^{(0,2)}$ of lightlike hypersurfaces M is called its *induced Ricci tensor* of M if it is symmetric. A symmetric $R^{(0,2)}$ tensor will be denoted by Ric.

Theorem 2.5. Let (M, g, S(TM)) be an (m+1)(m>2)-dimensional lightlike hypersurface of a semi-Riemannian space form $(\bar{M}(c), \bar{g})$ such that S(TM) is totally umbilical. Then M admits an induced symmetric Ricci tensor Ric. Moreover, both M and the leaf M^* of S(TM) are spaces of constant curvature c.

Proof. Using (1.14), (1.15), (1.16) and (2.7), we have

$$R(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y\}, \quad R^{(0,2)}(X,Y) = mcg(X,Y),$$

for any $X, Y, Z \in \Gamma(TM)$, due to the fact $\beta \gamma = 0$ by Theorem 2.2. Thus $R^{(0,2)}$ is a symmetric Ricci tensor Ric and M is a space of constant curvature c. Also, from (1.14) and (1.17), we have

$$R^*(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y\}, \quad Ric^*(X,Y) = (m-1)cg(X,Y),$$

for $X, Y, Z \in \Gamma(S(TM))$. Also M^* is a space of constant curvature c.

Combining Theorem 2.4 and 2.5 with Note 2.3, we have

Theorem 2.6. Let (M,g,S(TM)) be an (m+1)(m>2)-dimensional lightlike hypersurface of a semi-Riemannian space form $(\bar{M}(c), \bar{g})$ such that S(TM) is totally umbilical. Then M is a lightlike space form of constant curvature c and locally a product manifold $L \times M^*$, where L is a null curve in M and M^* is a semi-Riemannian space form of same constant curvature c.

Recall the following notion of null sectional curvature [1, 2, 3, 5]. Let $x \in M$ and ξ be a null vector of T_xM . A plane H of T_xM is called a null plane directed by ξ if it contains ξ , $g_x(\xi, W) = 0$ for any $W \in H$ and there exists $W_o \in H$ such that $g_x(W_o, W_o) \neq 0$. Then, the null sectional curvature of H, with respect to ξ and the induced connection ∇ of M, is defined as a real number

$$K_{\xi}(H) = \frac{g_x(R(W, \xi)\xi, W)}{g_x(W, W)},$$

where $W \neq 0$ is any vector in H independent with ξ . It is easy to see that $K_{\xi}(H)$ is independent of W but depends in a quadratic fashion on ξ . An $n(\geq 3)$ -dimensional Lorentzian manifold is of constant curvature if and only if its null sectional curvatures are everywhere zero [7].

THEOREM 2.7. Let (M, g, S(TM)) be an (m+1)(m > 2)-dimensional lightlike hypersurface of a semi-Riemannian space form $(\bar{M}(c), \bar{g})$ such that S(TM) is totally umbilical. Then every null plane H of T_xM directed by ξ has everywhere zero null sectional curvatures.

Proof. From (1.14) and the fact that $\beta \gamma = 0$, we show that

$$g(R(X,Y)Z, PW) = c\{g(Y,Z)g(X,PW) - g(X,Z)g(Y,PW)\},\$$

for any $X, Y, Z, W \in \Gamma(TM)$. Thus $K_{\xi}(H) = \frac{g_x(R(W, \xi)\xi, W)}{g_x(W, W)} = 0$ for any null plane H of T_xM directed by ξ .

Nomizu and Pinkall [6] defined an affine immersion as follows: Let $f: M \to \bar{M}$ be an immersion of a manifold M as a hypersurface of \bar{M} and $\bar{\nabla}$ and $\bar{\nabla}$ be torsion-free connections on M and \bar{M} respectively. Then f is an affine immersion if there exists locally a transversal vector field N along f such that

$$\bar{\nabla}_{f_*X}f_*Y = f_*(\nabla_XY) + B(X,Y)N, \quad \forall X, Y \in \Gamma(TM),$$

where f_* is the differential map of f. Then, as usual, we put

$$\bar{\nabla}_{f_*X}N = -A_N(f_*X) + \tau(f_*X)N.$$

Clearly, by (1.4), any lightlike isometric immersion is an affine immersion. Suppose ∇ is a flat connection on M. Let $\psi: M \to \mathbf{R}^{m+1}$ such that every point $x \in M$ has a neighborhood \mathcal{U} on which ψ is an affine connection preserving diffeomorphism with an open neighborhood \mathcal{W} of $\psi(x)$ in \mathbf{R}^{m+1} . Consider \mathbf{R}^{m+1} as a hyperplane of \mathbf{R}^{m+2} and let N be a parallel vector field, transversal to \mathbf{R}^{m+1} . Then, for any differentiable function $F: M \to \mathbf{R}$, define

$$f: M \to \mathbf{R}^{m+2}$$
; $f(x) = \psi(x) + F(x)N$, $\forall x \in M$.

Thus, f is an affine immersion with $A_N = 0$, called the graph immersion with respect to F. Now, we recall the following result.

THEOREM 2.8. [2]. Let M be a lightlike hypersurface of \mathbf{R}_q^{m+2} with a parallel screen distribution S(TM). Then the immersion of M is affinely equivalent to the graph immersion of a certain function $F: M \to \mathbf{R}$.

THEOREM 2.9. Let (M, g, S(TM)) be an (m+1)(m>2)-dimensional non-totally geodesic lightlike hypersurface of a semi-Riemannian space form $(\bar{M}(c), \bar{g})$ such that S(TM) is totally umbilical. Then the immersion of M is affinely equivalent to the graph immersion of a certain function $F: M \to \mathbf{R}$.

Proof. Since $B \neq 0$ on any $\mathcal{U} \subset M$, by Theorem 2.4, we have C = 0 on any $\mathcal{U} \subset M$, i.e., the screen distribution S(TM) is totally geodesic and the sectional curvature c of the ambient space $\bar{M}(c)$ satisfies c = 0. Therefore, by (1.6), C = 0, on any $\mathcal{U} \subset M$, implies S(TM) is parallel with respect to the induced connection ∇ . The fact c = 0 implies that $\bar{M}(c)$ is \mathbf{R}_q^{m+2} . Thus, by Theorem 2.8, we have our theorem.

References

- J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian Geometry, Marcel Dekker, Inc. New York, Second Edition, 1996.
- [2] K. L. Duggal, and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
- [3] K. L. Duggal and D. H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
- [4] K. L. Duggal and D. H. Jin, A Classification of Einstein lightlike hypersurfaces of a Lorentzian space form, to appear in J. Geom. Phys.
- [5] S. G. Harris, A triangle comparison theorem for Lorentz manifolds, Indiana Math. J. 31 (1982a), 289-308.
- [6] K. Nomizu and U. Pinkall, On the geometry of affine immersions, Math. Z. 195 (1981) 165-178.

[7] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.

*

Department of Mathematics Dongguk University Gyeongju 780-714, Republic of Korea *E-mail*: jindh@dongguk.ac.kr