ON THE GENERALIZED HYERS-ULAM STABILITY OF A BI-JENSEN FUNCTIONAL EQUATION

Kil-Woung Jun*, Ju-Ri Lee**, and Yang-Hi Lee***

Abstract. In this paper, we study the generalized Hyers-Ulam stability of a bi-Jensen functional equation

$$
4 f\left(\frac{x+y}{2}, \frac{z+w}{2}\right)=f(x, z)+f(x, w)+f(y, z)+f(y, w) .
$$

Moreover, we establish stability results on the punctured domain.

1. Introduction

The stability problem of functional equations originated from a question of S.M. Ulam [17] concerning the stability of group homomorphisms: Given a group G_{1}, a metric group $\left(G_{2}, d\right)$ and $\varepsilon>0$, does there exist a $\delta>0$ such that if $h: G_{1} \rightarrow G_{2}$ satisfies

$$
d(h(x y), h(x) h(y))<\delta
$$

for all $x, y \in G_{1}$, then a homomorphism $H: G_{1} \rightarrow G_{2}$ exists with

$$
d(h(x), H(x))<\varepsilon
$$

for all $x \in G_{1}$? If the answer is affirmative, we would say the equation of homomorphism $H(x y)=H(x) H(y)$ stable.
In 1941, D.H. Hyers [5] gave a first affirmative answer to the question of Ulam for Banach spaces. Hyers' theorem was generalized by T. Aoki [1] for additive mappings and by Th.M.Rassias [16] for linear mappings by considering an unbounded Cauchy difference(See the recent Maligranda's paper [13]). Since then, a further generalization of the Hyers-Ulam theorem has been extensively investigated by a number of mathematicians $[3,4,6,9,11,12,14]$.

Throughout this paper, let X be a vector space and Y a Banach space. A mapping $g: X \rightarrow Y$ is called a Cauchy mapping (respectively,

[^0]a Jensen mapping) if g satisfies the functional equation $g(x+y)=$ $g(x)+g(y)$ (respectively, $\left.2 g\left(\frac{x+y}{2}\right)=g(x)+g(y)\right)$.

For a given mapping $f: X \times X \rightarrow Y$, we define
$J f(x, y, z, w):=4 f\left(\frac{x+y}{2}, \frac{z+w}{2}\right)-f(x, z)-f(x, w)-f(y, z)-f(y, w)$,
$C_{1} f(x, y, z):=f(x+y, z)-f(x, z)-f(y, z)$,
$C_{2} f(x, y, z):=f(x, y+z)-f(x, y)-f(x, z)$,
$J_{1} f(x, y, z):=2 f\left(\frac{x+y}{2}, z\right)-f(x, z)-f(y, z)$,
$J_{2} f(x, y, z):=2 f\left(x, \frac{y+z}{2}\right)-f(x, y)-f(x, z)$
for all $x, y, z, w \in X$. A mapping $f: X \times X \rightarrow Y$ is called a biadditive (Cauchy-Jensen, Jensen-Cauchy, bi-Jensen, respectively) mapping if f satisfies the functional equations $C_{1} f=0$ and $C_{2} f=0\left(C_{1} f=0\right.$ and $J_{2} f=0, C_{2} f=0$ and $J_{1} f=0, J_{1} f=0$ and $J_{2} f=0$, respectively).

When $X=Y=\mathbb{R}$, the function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x, y)=$ $a x y+b x+c y+d$ is a solution of $J_{1} f(x, y, z)=0$ and $J_{2} f(x, y, z)=0$. It is easy to see that a mapping $f: X \times X \rightarrow Y$ is a bi-Jensen mapping if and only if the mapping f satisfies the functional equation $J f(x, y, z, w)=0$ for all $x, y, z, w \in X$.

Park and Bae [15] obtained the generalized Hyers-Ulam stability of Cauchy-Jensen mapping. Jun, Lee and Cho [7] improved the Park and Bae's results of Cauchy-Jensen functional equation. Bae and Park [2] investigated the stability of a bi-Jensen mapping in the following theorem.

Theorem 1.1. Let $\varphi, \psi: X \times X \times X \rightarrow[0, \infty)$ be two functions such that

$$
\begin{aligned}
& \tilde{\varphi}(x, y, z):=\sum_{j=0}^{\infty} \frac{1}{3^{j+1}}\left[\varphi\left(3^{j} x, 3^{j} y, z\right)+\varphi\left(x, y, 3^{j} z\right)\right]<\infty, \\
& \tilde{\psi}(x, y, z):=\sum_{j=0}^{\infty} \frac{1}{3^{j+1}}\left[\psi\left(x, 3^{j} y, 3^{j} z\right)+\psi\left(3^{j} x, y, z\right)\right]<\infty
\end{aligned}
$$

for all $x, y, z \in X$. Let $f: X \times X \rightarrow Y$ be a mapping such that

$$
\begin{aligned}
& \left\|J_{1} f(x, y, z)\right\| \leq \varphi(x, y, z), \\
& \left\|J_{2} f(x, y, z)\right\| \leq \psi(x, y, z)
\end{aligned}
$$

for all $x, y, z \in X$. Then there exist two bi-Jensen mappings F, F^{\prime} : $X \times X \rightarrow Y$ such that

$$
\begin{aligned}
& \|f(x, y)-f(0, y)-F(x, y)\| \leq \tilde{\varphi}(x,-x, y)+\tilde{\varphi}(-x, 3 x, y) \\
& \left\|f(x, y)-f(x, 0)-F^{\prime}(x, y)\right\| \leq \tilde{\psi}(x, y,-y)+\tilde{\psi}(x,-y, 3 y)
\end{aligned}
$$

for all $x, y \in X$. The mappings $F, F^{\prime}: X \times X \rightarrow Y$ are given by

$$
F(x, y):=\lim _{j \rightarrow \infty} \frac{1}{3^{j}} f\left(3^{j} x, y\right) \quad \text { and } \quad F^{\prime}(x, y):=\lim _{j \rightarrow \infty} \frac{1}{3^{j}} f\left(x, 3^{j} y\right)
$$

for all $x, y \in X$.
In this paper, we improve Bae and Park's stability results for the biJensen functional equation by adopting the direct method of proof and prove the uniqueness of a bi-Jensen mapping. Moreover we establish new results for the stability of a bi-Jensen functional equation.

2. Stability of a bi-Jensen functional equation

One can easily prove the basic properties of a bi-Jensen mapping in the following lemma([8]).

Lemma 2.1. Let $f: X \times X \rightarrow Y$ be a bi-Jensen mapping. Then

$$
\begin{aligned}
& f(x, y)=\frac{1}{2^{n}} f\left(x, 2^{n} y\right)+\left(1-\frac{1}{2^{n}}\right) f(x, 0) \\
& f(x, y)=\frac{1}{2^{n}} f\left(2^{n} x, y\right)+\frac{1}{2^{n}}\left(1-\frac{1}{2^{n}}\right) f\left(0,2^{n} y\right)+\left(1-\frac{1}{2^{n}}\right)^{2} f(0,0) \\
& f(x, y)=2^{n} f\left(\frac{x}{2^{n}}, y\right)+2^{n}\left(1-2^{n}\right) f\left(0, \frac{y}{2^{n}}\right)+\left(1-2^{n}\right)^{2} f(0,0) \\
& f(x, y)=\frac{1}{2^{n}} f\left(2^{n} x, y\right)+\left(1-\frac{1}{2^{n}}\right) 2^{n} f\left(0, \frac{y}{2^{n}}\right)+\left(1-\frac{1}{2^{n}}\right)\left(1-2^{n}\right) f(0,0)
\end{aligned}
$$

for all $x, y \in X$ and $n \in \mathbb{N}$.
Theorem 2.2. Let $\varphi, \psi: X \times X \times X \rightarrow[0, \infty)$ be two functions satisfying

$$
\sum_{j=1}^{\infty} \frac{1}{2^{j}}\left(\varphi\left(2^{j} x, 2^{j} y, z\right)+\varphi\left(x, y, 2^{j} z\right)+\psi\left(2^{j} x, y, z\right)+\psi\left(x, 2^{j} y, 2^{j} z\right)\right)<\infty
$$

for all $x, y, z \in X$. Let $f: X \times X \rightarrow Y$ be a mapping such that

$$
\begin{align*}
\left\|J_{1} f(x, y, z)\right\| & \leq \varphi(x, y, z) \tag{2.1}\\
\left\|J_{2} f(x, y, z)\right\| & \leq \psi(x, y, z) \tag{2.2}
\end{align*}
$$

for all $x, y, z \in X$. Then there exists a unique bi-Jensen mapping F : $X \times X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x, y)-F(x, y)\| \leq \sum_{j=1}^{\infty} \frac{\varphi\left(2^{j} x, 0, y\right)+\psi\left(0,0,2^{j} y\right)}{2^{j}} \tag{2.3}
\end{equation*}
$$

for all $x, y \in X$ with $F(0,0)=f(0,0)$. The mapping $F: X \times X \rightarrow Y$ is given by

$$
F(x, y):=\lim _{j \rightarrow \infty} \frac{f\left(2^{j} x, y\right)+f\left(0,2^{j} y\right)}{2^{j}}+f(0,0)
$$

for all $x, y \in X$.
Proof. By (2.1) and (2.2), we get

$$
\begin{array}{r}
\left\|\frac{f\left(2^{j} x, y\right)-f(0, y)}{2^{j}}-\frac{f\left(2^{j+1} x, y\right)-f(0, y)}{2^{j+1}}\right\| \\
=\left\|\frac{J_{1} f\left(2^{j+1} x, 0, y\right)}{2^{j+1}}\right\| \leq \frac{\varphi\left(2^{j+1} x, 0, y\right)}{2^{j+1}}, \\
\left\|\frac{f\left(0,2^{j} y\right)-f(0,0)}{2^{j}}-\frac{f\left(0,2^{j+1} y\right)-f(0,0)}{2^{j+1}}\right\| \\
\quad=\left\|\frac{J_{2} f\left(0,0,2^{j+1} y\right)}{2^{j+1}}\right\| \leq \frac{\psi\left(0,0,2^{j+1} y\right)}{2^{j+1}}
\end{array}
$$

for all $x, y \in X$ and $j \in \mathbb{N}$. For given integers $l, m(0 \leq l<m)$,

$$
\begin{align*}
& \| \frac{f\left(2^{l} x, y\right)-f(0, y)}{2^{l}}
\end{align*}-\frac{f\left(2^{m} x, y\right)-f(0, y)}{2^{m}} \| .
$$

for all $x, y \in X$. By the hypotheses of φ and ψ, the sequences $\left\{\frac{1}{2^{j}}\left(f\left(2^{j} x\right.\right.\right.$, $y)-f(0, y))\}$ and $\left\{\frac{1}{2^{j}}\left(f\left(0,2^{j} y\right)-f(0,0)\right)\right\}$ are Cauchy sequences for all $x, y \in X$. Since Y is complete, the sequences $\left\{\frac{1}{2^{j}}\left(f\left(2^{j} x, y\right)-f(0, y)\right)\right\}$ and $\left\{\frac{1}{2^{j}}\left(f\left(0,2^{j} y\right)-f(0,0)\right)\right\}$ converge for all $x, y \in X$. Define F_{1}, F_{2} :
$X \times X \rightarrow Y$ by

$$
\begin{aligned}
& F_{1}(x, y):=\lim _{j \rightarrow \infty} \frac{f\left(2^{j} x, y\right)}{2^{j}}, \\
& F_{2}(x, y):=\lim _{j \rightarrow \infty} \frac{f\left(0,2^{j} y\right)}{2^{j}}
\end{aligned}
$$

for all $x, y \in X$. Putting $l=0$ and taking $m \rightarrow \infty$ in (2.4) and (2.5), one can obtain the inequalities

$$
\begin{aligned}
& \left\|f(x, y)-f(0, y)-F_{1}(x, y)\right\| \leq \sum_{j=1}^{\infty} \frac{\varphi\left(2^{j} x, 0, y\right)}{2^{j}}, \\
& \left\|f(0, y)-f(0,0)-F_{2}(x, y)\right\| \leq \sum_{j=1}^{\infty} \frac{\psi\left(0,0,2^{j} y\right)}{2^{j}}
\end{aligned}
$$

for all $x, y \in X$. By (2.1), (2.2), the hypotheses of φ, ψ and the definitions of F_{1} and F_{2}, we get

$$
\begin{aligned}
& J_{1} F_{1}(x, y, z)=\lim _{j \rightarrow \infty} \frac{J_{1} f\left(2^{j} x, 2^{j} y, z\right)}{2^{j}}=0, \\
& J_{2} F_{1}(x, y, z)=\lim _{j \rightarrow \infty} \frac{J_{2} f\left(2^{j} x, y, z\right)}{2^{j}}=0, \\
& J_{1} F_{2}(x, y, z)=0, \\
& J_{2} F_{2}(x, y, z)=\lim _{j \rightarrow \infty} \frac{J_{2} f\left(0,2^{j} y, 2^{j} z\right)}{2^{j}}=0
\end{aligned}
$$

for all $x, y, z \in X$ and so F is a bi-Jensen mapping satisfying (2.3), where F is given by

$$
F(x, y)=F_{1}(x, y)+F_{2}(x, y)+f(0,0) .
$$

Now, let $F^{\prime}: X \times X \rightarrow Y$ be another bi-Jensen mapping satisfying (2.3) with $F^{\prime}(0,0)=f(0,0)$. By Lemma 2.1, we have

$$
\begin{aligned}
\| F(x, y) & -F^{\prime}(x, y) \| \\
& =\frac{1}{2^{n}}\left\|\left(F-F^{\prime}\right)\left(2^{n} x, y\right)+\left(1-\frac{1}{2^{n}}\right)\left(F-F^{\prime}\right)\left(0,2^{n} y\right)\right\| \\
& \left.\left.\leq \frac{1}{2^{n}} \|(F-f)\left(2^{n} x, y\right)\right)\left\|+\frac{1}{2^{n}}\right\|(F-f)\left(0,2^{n} y\right)\right) \| \\
& +\frac{1}{2^{n}}\left\|\left(f-F^{\prime}\right)\left(2^{n} x, y\right)\right\|+\frac{1}{2^{n}}\left\|\left(f-F^{\prime}\right)\left(0,2^{n} y\right)\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{j=1}^{\infty} \frac{2}{2^{j+n}}\left[\varphi\left(2^{j+n} x, 0, y\right)+\psi\left(0,0,2^{j} y\right)\right. \\
& \left.+\varphi\left(0,0,2^{n} y\right)+\psi\left(0,0,2^{j+n} y\right)\right]
\end{aligned}
$$

for all $x, y \in X$ and $n \in \mathbb{N}$. As $n \rightarrow \infty$, we may conclude that $F(x, y)=$ $F^{\prime}(x, y)$ for all $x, y \in X$. Thus such a bi-Jensen mapping $F: X \times X \rightarrow Y$ is unique.

Theorem 2.3. Let $\varphi, \psi: X \times X \times X \rightarrow[0, \infty)$ be two functions satisfying

$$
\sum_{j=0}^{\infty} 2^{j}\left(\varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}, z\right)+\varphi\left(x, y, \frac{z}{2^{j}}\right)+\psi\left(\frac{x}{2^{j}}, y, z\right)+\psi\left(x, \frac{y}{2^{j}}, \frac{z}{2^{j}}\right)\right)<\infty
$$

for all $x, y, z \in X$. Let $f: X \times X \rightarrow Y$ be a mapping satisfying (2.1) and (2.2) for all $x, y, z \in X$. Then there exists a unique bi-Jensen mapping $F: X \times X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x, y)-F(x, y)\| \leq \sum_{j=0}^{\infty} 2^{j} \varphi\left(\frac{x}{2^{j}}, 0, y\right) \tag{2.6}
\end{equation*}
$$

for all $x, y \in X$. The mapping F is given by

$$
F(x, y):=\lim _{j \rightarrow \infty} 2^{j}\left(f\left(\frac{x}{2^{j}}, y\right)-f(0, y)\right)+f(0, y)
$$

for all $x, y \in X$.
Proof. Letting $y=0, z=y$ in (2.1), we get

$$
\left\|2^{j}\left(f\left(\frac{x}{2^{j}}, y\right)-f(0, y)\right)-2^{j+1}\left(f\left(\frac{x}{2^{j+1}}, y\right)-f(0, y)\right)\right\| \leq 2^{j} \varphi\left(\frac{x}{2^{j}}, 0, y\right),
$$

for all $x, y \in X$. Applying the similar method as in the proof of Theorem 2.2, we can define the map $F_{1}: X \times X \rightarrow Y$ by

$$
F_{1}(x, y):=\lim _{j \rightarrow \infty} 2^{j}\left(f\left(\frac{x}{2^{j}}, y\right)-f(0, y)\right)
$$

for all $x, y \in X$ and get the inequality

$$
\left\|f(x, y)-f(0, y)-F_{1}(x, y)\right\| \leq \sum_{j=0}^{\infty} 2^{j} \varphi\left(\frac{x}{2^{j}}, 0, y\right)
$$

for all $x, y \in X$. By (2.1), (2.2), the hypotheses of φ, ψ and the definition of F_{1}, we get

$$
\begin{aligned}
& J_{1} F_{1}(x, y, z)=\lim _{j \rightarrow \infty} 2^{j} J_{1} f\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}, z\right)=0, \\
& J_{2} F_{1}(x, y, z)=\lim _{j \rightarrow \infty} 2^{j}\left(J_{2} f\left(\frac{x}{2^{j}}, y, z\right)-J_{2} f(0, y, z)\right)=0
\end{aligned}
$$

for all $x, y, z \in X$. By the hypotheses of φ and ψ, we have $\varphi(0,0, z)=0$ and $\psi(0, y, z)=0$ for all $y, z \in X$. And so we have $J_{1} f(0,0, z)=0$ and $J_{2} f(0, y, z)=0$ for all $y, z \in X$. Hence F is a bi-Jensen mapping satisfying (2.6), where F is given by

$$
F(x, y)=F_{1}(x, y)+f(0, y) .
$$

Now, let $F^{\prime}: X \times X \rightarrow Y$ be another bi-Jensen mapping satisfying (2.6) with $F^{\prime}(0,0)=f(0,0)$. By Lemma 2.1 and $\varphi(0,0, y)=0$ for all $y \in X$, we have

$$
\begin{aligned}
\left\|F(x, y)-F^{\prime}(x, y)\right\| & =2^{n}\left\|\left(F-F^{\prime}\right)\left(\frac{x}{2^{n}}, y\right)+\left(1-2^{n}\right)\left(F-F^{\prime}\right)\left(0, \frac{y}{2^{n}}\right)\right\| \\
& \leq 2^{n}\left\|(F-f)\left(\frac{x}{2^{n}}, y\right)\right\|+2^{n}\left\|\left(f-F^{\prime}\right)\left(\frac{x}{2^{n}}, y\right)\right\| \\
& +4^{n}\left\|(F-f)\left(0, \frac{y}{2^{n}}\right)\right\|+4^{n}\left\|\left(f-F^{\prime}\right)\left(0, \frac{y}{2^{n}}\right)\right\| \\
& \leq \sum_{j=0}^{\infty} 2^{j+n} \varphi\left(\frac{x}{2^{j+n}}, 0, y\right)
\end{aligned}
$$

for all $x, y \in X$ and $n \in \mathbb{N}$. As $n \rightarrow \infty$, we may conclude that $F(x, y)=$ $F^{\prime}(x, y)$ for all $x, y \in X$. Thus such a bi-Jensen mapping $F: X \times X \rightarrow Y$ is unique.

Theorem 2.4. Let $\varphi, \psi: X \times X \times X \rightarrow[0, \infty)$ be two functions satisfying
$\sum_{j=1}^{\infty} \frac{\varphi\left(2^{j} x, 2^{j} y, z\right)+\psi\left(2^{j} x, y, z\right)}{2^{j}}+\sum_{j=0}^{\infty} 2^{j}\left(\varphi\left(x, y, \frac{z}{2^{j}}\right)+\psi\left(x, \frac{y}{2^{j}}, \frac{z}{2^{j}}\right)\right)<\infty$
for all $x, y, z \in X$. Let $f: X \times X \rightarrow Y$ be a mapping satisfying (2.1) and (2.2) for all $x, y, z \in X$. Then there exists a unique bi-Jensen mapping $F: X \times X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x, y)-F(x, y)\| \leq \sum_{j=1}^{\infty} \frac{1}{2^{j}} \varphi\left(2^{j} x, 0, y\right) \tag{2.7}
\end{equation*}
$$

for all $x, y \in X$. The mapping F is given by

$$
F(x, y):=\lim _{j \rightarrow \infty} \frac{1}{2^{j}} f\left(2^{j} x, y\right)+f(0, y)
$$

for all $x, y \in X$.
Proof. By the similar method as in Theorem 2.2 and Theorem 2.3, we get a bi-Jensen map F which satisfies (2.7). Now, let $F^{\prime}: X \times X \rightarrow Y$ be another bi-Jensen mapping satisfying (2.7) with $F^{\prime}(0,0)=f(0,0)$. By Lemma 2.1 and $\varphi(0,0, y)=0$ for all $y \in X$, we have

$$
\begin{aligned}
\left\|F(x, y)-F^{\prime}(x, y)\right\| & \left.=\frac{1}{2^{n}} \|\left(F-F^{\prime}\right)\left(2^{n} x, y\right)\right)+\left(2^{n}-1\right)\left(F-F^{\prime}\right)\left(0, \frac{y}{2^{n}}\right) \| \\
& \left.\leq \frac{1}{2^{n}} \|(F-f)\left(2^{n} x, y\right)\right)\|+\|(F-f)\left(0, \frac{y}{2^{n}}\right) \| \\
& +\frac{1}{2^{n}}\left\|\left(f-F^{\prime}\right)\left(2^{n} x, y\right)\right\|+\left\|\left(f-F^{\prime}\right)\left(0, \frac{y}{2^{n}}\right)\right\| \\
& \leq \sum_{j=1}^{\infty} \frac{2}{2^{j+n}} \varphi\left(2^{j+n} x, 0, y\right)
\end{aligned}
$$

for all $x, y \in X$ and $n \in \mathbb{N}$. As $n \rightarrow \infty$, we may conclude that $F(x, y)=$ $F^{\prime}(x, y)$ for all $x, y \in X$. Thus such a bi-Jensen mapping $F: X \times X \rightarrow Y$ is unique.

Corollary 2.5. Let p, q, θ be fixed positive real numbers with $p, q \neq$ 1 and let X a normed space. If $f: X \times X \rightarrow Y$ is a mapping satisfying

$$
\begin{aligned}
& \left\|J_{1} f(x, y, z)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)\|z\|^{q}, \\
& \left\|J_{2} f(x, y, z)\right\| \leq \theta\|x\|^{p}\left(\|y\|^{q}+\|z\|^{q}\right)
\end{aligned}
$$

for all $x, y, z \in X$, then there exists a unique bi-Jensen mapping F : $X \times X \rightarrow Y$ such that

$$
\|f(x, y)-F(x, y)\| \leq \frac{2^{p} \theta}{\left|2-2^{p}\right|}\|x\|^{p}\|y\|^{q}
$$

for all $x, y \in X$.

3. Stability of a bi-Jensen functional equation on the punctured domain

The following lemma can be found in [10].

Lemma 3.1. Let a set A be a subset of X satisfying the following condition: for every $x \neq 0$, there exists a positive integer n_{x} such that $n x \notin A$ for all integers n with $|n| \geq n_{x}$ and $n x \in A$ for all integers n with $|n|<n_{x}$. Let $f: X \times X \rightarrow Y$ be a mapping such that

$$
J_{1} f(x, y, z)=0, \quad J_{2} f(x, y, z)=0
$$

for all $x, y, z \in X \backslash A$. Then there exists a unique bi-Jensen mapping $F: X \times X \rightarrow Y$ such that

$$
F(x, y)=f(x, y)
$$

for all $x, y \in X \backslash A$. Moreover,

$$
F(x, y)=f(x, y)
$$

holds for all $(x, y) \in(X \times X) \backslash(A \times A)$.
Theorem 3.2. Let $\varphi, \psi: X \times X \times X \rightarrow[0, \infty)$ be as in Theorem 2.2. Let $f: X \times X \rightarrow Y$ be a mapping satisfying (2.1) and (2.2) for all $x, y, z \in X \backslash A$ and let $x_{0} \in X \backslash A$. Then there exists a bi-Jensen mapping F such that

$$
\begin{equation*}
\|f(x, y)-F(x, y)\| \leq \sum_{j=0}^{\infty}\left(\frac{\Phi_{1}\left(2^{j} x, y\right)}{2^{j+2}}+\frac{\Phi_{2}\left(x, 2^{j} y\right)}{2^{j+4}}\right)+\Phi_{3}\left(x_{0}, y\right) \tag{3.1}
\end{equation*}
$$

for all $x, y \in X \backslash A$, where

$$
\begin{aligned}
\Phi_{1}(x, y) & =\varphi(3 x,-x, y)+\varphi(3 x, x, y)+\varphi(x,-x, y) \\
\Phi_{2}(x, y) & =4 \varphi(x,-x, y)+4 \varphi(x,-x,-y)+2 \varphi(x,-x, 2 y) \\
& +2 \varphi(x,-x,-2 y)+\psi(x, 3 y, y)+\psi(-x, 3 y, y)+\psi(x,-3 y,-y) \\
& +\psi(-x,-3 y,-y)+\psi(x, 3 y,-y)+\psi(-x, 3 y,-y) \\
& +\psi(x,-3 y, y)+\psi(-x,-3 y, y) \\
\Phi_{3}\left(x_{0}, y\right) & =\frac{1}{4}\left(\varphi\left(x_{0},-x_{0}, y\right)+\varphi\left(x_{0},-x_{0},-y\right)\right. \\
& \left.+\psi\left(x_{0}, y,-y\right)+\psi\left(-x_{0}, y,-y\right)\right)
\end{aligned}
$$

The mapping $F: X \times X \rightarrow Y$ is given by

$$
F(x, y):=\lim _{j \rightarrow \infty}\left(\frac{f\left(2^{j} x, y\right)}{2^{j}}+\frac{f\left(0,2^{j} y\right)}{2^{j}}\right)+\frac{f\left(x_{0}, 0\right)+f\left(-x_{0}, 0\right)}{2}
$$

for all $x, y \in X$.

Proof. Let $c=\frac{f\left(x_{0}, 0\right)+f\left(-x_{0}, 0\right)}{2}$. For an arbitrary $y \in X \backslash\{0\}$, using (2.1), (2.2) and the following inequality

$$
\begin{aligned}
\| \frac{c}{2^{j}} & -\frac{f\left(0,2^{j} y\right)+f\left(0,-2^{j} y\right)}{2^{j+1}}\left\|=\frac{1}{2^{j+2}}\right\| J_{1} f\left(x_{0},-x_{0}, 2^{j} y\right) \\
& +J_{1} f\left(x_{0},-x_{0},-2^{j} y\right)-J_{2} f\left(x_{0}, 2^{j} y,-2^{j} y\right)-J_{2} f\left(-x_{0}, 2^{j} y,-2^{j} y\right) \|
\end{aligned}
$$

for sufficiently large $j \in \mathbb{N}$, we get

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{f\left(0,2^{j} y\right)+f\left(0,-2^{j} y\right)}{2^{j+1}}=0 \tag{3.2}
\end{equation*}
$$

for all $y \in X \backslash\{0\}$. In particular, for $y \in X \backslash A$, the inequality

$$
\begin{equation*}
\left\|\frac{f(0, y)+f(0,-y)}{2}-c\right\| \leq \Phi_{3}\left(x_{0}, y\right) \tag{3.3}
\end{equation*}
$$

holds. By (2.1) and (2.2), we get

$$
\begin{aligned}
& \left\|\frac{f\left(2^{j} x, y\right)-f(0, y)}{2^{j}}-\frac{f\left(2^{j+1} x, y\right)-f(0, y)}{2^{j+1}}\right\| \\
& =\frac{1}{2^{j+2}}\left\|J_{1} f\left(3 \cdot 2^{j} x,-2^{j} x, y\right)-J_{1} f\left(3 \cdot 2^{j} x, 2^{j} x, y\right)-J_{1} f\left(2^{j} x,-2^{j} x, y\right)\right\| \\
& \leq \frac{\Phi_{1}\left(2^{j} x, y\right)}{2^{j+2}}, \\
& \left\|\frac{f\left(0,2^{j} y\right)-f\left(0,-2^{j} y\right)}{2^{j+1}}-\frac{f\left(0,2^{j+1} y\right)-f\left(0,-2^{j+1} y\right)}{2^{j+2}}\right\| \\
& =\frac{1}{2^{j+4}} \| 4 J_{1} f\left(x,-x, 2^{j} y\right)-4 J_{1} f\left(x,-x,-2^{j} y\right)-2 J_{1} f\left(x,-x, 2^{j+1} y\right) \\
& +2 J_{1} f\left(x,-x,-2^{j+1} y\right)-J_{2} f\left(x, 3 \cdot 2^{j} y, 2^{j} y\right)-J_{2} f\left(-x, 3 \cdot 2^{j} y, 2^{j} y\right) \\
& +J_{2} f\left(x,-3 \cdot 2^{j} y,-2^{j} y\right)+J_{2} f\left(-x,-3 \cdot 2^{j} y,-2^{j} y\right) \\
& +J_{2} f\left(x, 3 \cdot 2^{j} y,-2^{j} y\right)+J_{2} f\left(-x, 3 \cdot 2^{j} y,-2^{j} y\right)-J_{2} f\left(x,-3 \cdot 2^{j} y, 2^{j} y\right) \\
& -J_{2} f\left(-x,-3 \cdot 2^{j} y, 2^{j} y\right) \| \leq \frac{\Phi_{2}\left(x, 2^{j} y\right)}{2^{j+4}}
\end{aligned}
$$

for all $x, y \in X \backslash A$ and $j \in \mathbb{N}$. By the hypotheses of φ, ψ and the similar method as in Theorem 2.2, the sequences $\left\{\frac{f\left(2^{j} x, y\right)-f(0, y)}{2^{j}}\right\}$ and $\left\{\frac{f\left(0,2^{j} y\right)-f\left(0,-2^{j} y\right)}{2^{j+1}}\right\}$ are Cauchy sequences for all $x, y \in X \backslash A$. Since Y is complete, the sequences $\left\{\frac{f\left(2^{j} x, y\right)-f(0, y)}{2^{j}}\right\}$ and $\left\{\frac{f\left(0,2^{j} y\right)-f\left(0,-2^{j} y\right)}{2^{j+1}}\right\}$ converge for all $x, y \in X \backslash A$. Note that if $x \in X \backslash\{0\}$, then $2^{j} x \in$ $X \backslash A$ for sufficiently large $j \in \mathbb{N}$. Hence the limit $\lim _{j \rightarrow \infty} \frac{f\left(2^{j} x, y\right)}{2^{j}}=$
$\lim _{j \rightarrow \infty} \frac{f\left(2^{j} x, y\right)-f(0, y)}{2^{j}}$ exists for all $x \in X$ and $y \in X \backslash A$. Since the equality (3.2) and the inequalities

$$
\begin{aligned}
& \begin{aligned}
\| \frac{f\left(2^{j} x, y\right)}{2^{j-1}} & -\frac{f\left(2^{j} x,\left(k^{\prime}+2\right) y\right)}{2^{j}}-\frac{f\left(2^{j} x,-k^{\prime} y\right)}{2^{j}} \| \\
& =\left\|\frac{J_{2} f\left(2^{j} x,\left(k^{\prime}+2\right) y,-k^{\prime} y\right)}{2^{j}}\right\| \leq \frac{\psi\left(2^{j} x,\left(k^{\prime}+2\right) y,-k^{\prime} y\right)}{2^{j}} \\
\| \frac{f\left(2^{j} x, 0\right)}{2^{j-1}} & -\frac{f\left(2^{j} x, k^{\prime} y\right)}{2^{j}}-\frac{f\left(2^{j} x,-k^{\prime} y\right)}{2^{j}} \| \\
& =\left\|\frac{J_{2} f\left(2^{j} x,\left(k^{\prime}+2\right) y,-k^{\prime} y\right)}{2^{j}}\right\| \leq \frac{\psi\left(2^{j} x, k^{\prime} y,-k^{\prime} y\right)}{2^{j}}
\end{aligned}
\end{aligned}
$$

hold for all $x, y \neq 0$ and $j, k^{\prime} \in \mathbb{N}$ with $2^{j} x, k^{\prime} y \in X \backslash A$, we can define $F_{1}, F_{2}: X \times X \rightarrow Y$ by

$$
\begin{aligned}
& F_{1}(x, y):=\lim _{j \rightarrow \infty} \frac{f\left(2^{j} x, y\right)}{2^{j}}=\lim _{j \rightarrow \infty} \frac{f\left(2^{j} x, y\right)-f(0, y)}{2^{j}}, \\
& F_{2}(x, y):=\lim _{j \rightarrow \infty} \frac{f\left(0,2^{j} y\right)}{2^{j}}=\lim _{j \rightarrow \infty} \frac{f\left(0,2^{j} y\right)-f\left(0,-2^{j} y\right)}{2^{j+1}} .
\end{aligned}
$$

By (2.1), (2.2) and the definition of F_{1}, we obtain

$$
\begin{aligned}
& J_{1} F_{1}(x, y, z)=\lim _{j \rightarrow \infty} \frac{J_{1} f\left(2^{j} x, 2^{j} y, z\right)}{2^{j}}=0 \\
& J_{2} F_{1}(x, z, w)=\lim _{j \rightarrow \infty} \frac{J_{2} f\left(2^{j} x, z, w\right)}{2^{j}}=0
\end{aligned}
$$

for all $x, y \neq 0$ and $z, w \notin A$. By Lemma 3.1, there exists a bi-Jensen mapping $F_{1}: X \times X \rightarrow Y$ such that $F_{1}^{\prime}(x, y)=F_{1}(x, y)$ for all $(x, y) \in$ $(X \times X) \backslash(A \times A)$. Since the equalities

$$
\begin{aligned}
F_{1}(x, y)-F_{1}^{\prime}(x, y) & =\frac{1}{2}\left[J_{1} F_{1}((k+2) x,-k x, y)-J_{1} F_{1}^{\prime}((k+2) x,-k x, y)\right] \\
& =0 \\
F_{1}(x, y)-F_{1}^{\prime}(x, y) & =\frac{1}{2}\left[J_{1} F_{1}(k x,-k x, y)-J_{1} F_{1}^{\prime}(k x,-k x, y)\right]=0
\end{aligned}
$$

hold for all $x \neq 0$ and $y \notin A$ with $k x \notin A$, the equalities

$$
\begin{aligned}
F_{1}(x, y)-F_{1}^{\prime}(x, y) & =\frac{1}{2}\left[J_{2} F_{1}\left(x,\left(k^{\prime}+2\right) y,-k^{\prime} y\right)\right. \\
& \left.-J_{2} F_{1}^{\prime}\left(x,\left(k^{\prime}+2\right) y,-k^{\prime} y\right)\right]=0 \\
F_{1}(x, 0)-F_{1}^{\prime}(x, 0) & =\frac{1}{2}\left[J_{2} F_{1}\left(x, k^{\prime} y,-k^{\prime} y\right)-J_{2} F_{1}^{\prime}\left(x, k^{\prime} y,-k^{\prime} y\right)\right]=0 \\
F_{1}(0, y)-F_{1}^{\prime}(0, y) & =J_{2} F_{1}\left(0,\left(k^{\prime}+2\right) y,-k^{\prime} y\right) \\
& -J_{2} F_{1}^{\prime}\left(0,\left(k^{\prime}+2\right) y,-k^{\prime} y\right)=0
\end{aligned}
$$

hold for all $x, y \neq 0$ with $k^{\prime} y \notin A$. Hence F_{1} is a bi-Jensen mapping. Since

$$
\begin{aligned}
J_{2} F_{2}(x, y,-y) & =0 \\
J_{2} F_{2}(x, y, z)= & \lim _{j \rightarrow \infty}\left[\frac{J_{1} f\left(w,-w, 2^{j-1}(y+z)\right)}{2^{j}}-\frac{J_{1} f\left(w,-w, 2^{j} y\right)}{2^{j+1}}\right. \\
& -\frac{J_{1} f\left(w,-w, 2^{j} z\right)}{2^{j+1}}+\frac{J_{2} f\left(w, 2^{j} y, 2^{j} z\right)}{2^{j+1}} \\
& \left.+\frac{J_{2} f\left(-w, 2^{j} y, 2^{j} z\right)}{2^{j+1}}\right] \\
= & 0
\end{aligned}
$$

for all $x, y, z \in X$ with $y, z, y+z \neq 0$ and $w \notin A$, we have

$$
J_{1} F_{2}(x, y, z)=0, J_{2} F_{2}(x, y, z)=0
$$

for all $x, y, z \in X$. Using the similar method as in Theorem 2.2, one can obtain the inequalities

$$
\begin{align*}
\left\|f(x, y)-f(0, y)-F_{1}(x, y)\right\| & \leq \sum_{j=0}^{\infty} \frac{\Phi_{1}\left(2^{j} x, y\right)}{2^{j+2}} \tag{3.4}\\
\left\|\frac{f(0, y)-f(0,-y)}{2}-F_{2}(x, y)\right\| & \leq \sum_{j=0}^{\infty} \frac{\Phi_{2}\left(x, 2^{j} y\right)}{2^{j+4}} \tag{3.5}
\end{align*}
$$

for all $x, y \in X \backslash A$. By (3.3), (3.4), (3.5) and the inequality

$$
\begin{aligned}
\| f(x, y) & -F(x, y)\|\leq\| f(x, y)-f(0, y)-F_{1}(x, y) \| \\
& +\left\|\frac{f(0, y)+f(0,-y)}{2}-c\right\|+\left\|\frac{f(0, y)-f(0,-y)}{2}-F_{2}(x, y)\right\|
\end{aligned}
$$

we see that F is a bi-Jensen mapping satisfying (3.1) for all $x, y \in X \backslash A$, where F is given by

$$
F(x, y)=F_{1}(x, y)+F_{2}(x, y)+c
$$

for all $x, y \in X$.
Corollary 3.3. Let p, q, θ be fixed positive real numbers with $p, q<$ 1 and let X a normed space. If $f: X \times X \rightarrow Y$ is a mapping satisfying

$$
\begin{aligned}
& \left\|J_{1} f(x, y, z)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)\|z\|^{q}, \\
& \left\|J_{2} f(x, y, z)\right\| \leq \theta\|x\|^{p}\left(\|y\|^{q}+\|z\|^{q}\right)
\end{aligned}
$$

for all $\|x\|,\|y\|,\|z\| \geq 1$ and $x_{0} \in X$ with $\left\|x_{0}\right\|>1$, then there exists a unique bi-Jensen mapping F such that
$\|f(x, y)-F(x, y)\| \leq\left(\frac{2+2 \cdot 3^{p}}{2-2^{p}}+\frac{3+2^{q}+3^{q}}{2-2^{q}}\right) \theta\|x\|^{p}\|y\|^{q}+2 \theta\left\|x_{0}\right\|^{p}\|y\|^{q}$ for all $\|x\|,\|y\| \geq 1$ with $F(0,0)=\frac{f\left(x_{0}, 0\right)+f\left(-x_{0}, 0\right)}{2}$.

Theorem 3.4. Let $\varphi, \psi: X \times X \times X \rightarrow[0, \infty)$ be two functions satisfying

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \varphi\left(2^{i} x, 2^{i} y, 2^{j} z\right)<\infty, \quad \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \psi\left(2^{i} x, 2^{j} y, 2^{j} z\right)<\infty
$$

for all $x, y, z \in X$. Let $f: X \times X \rightarrow Y$ be a mapping satisfying (2.1) and (2.2) for all $x, y, z \in X \backslash A$. Then there exists a unique bi-Jensen mapping F such that

$$
f(x, y)=F(x, y)
$$

for all $x, y \in X \backslash A$.
Proof. Putting $d=\frac{f(0, x)+f(0,-x)}{2}$ for a fixed $x \in X \backslash A$ and using the equality

$$
\begin{aligned}
& \frac{f(0, x)+}{}+f(0,-x) \\
& \quad 2 \\
& \quad=\frac{1}{4} \lim _{j \rightarrow \infty}\left[-J_{1} f\left(2^{j} z,-2^{j} z, x\right)-J_{1} f\left(2^{j} z,-2^{j} z,-x\right)\right. \\
& \quad+J_{2} f\left(2^{j} z, x,-x\right)+J_{2} f\left(-2^{j} z, x,-x\right) \\
& \quad+J_{1} f\left(2^{j} z,-2^{j} z, y\right)+J_{1} f\left(2^{j} z,-2^{j} z,-y\right) \\
& \left.\quad-J_{2} f\left(2^{j} z, y,-y\right)-J_{2} f\left(-2^{j} z, y,-y\right)\right] \\
& \quad=0
\end{aligned}
$$

for all $x, y, z \in X \backslash A$, we get

$$
\frac{f(0, y)+f(0,-y)}{2}=d
$$

for all $y \in X \backslash A$. By (3.4), (3.5) and the following inequality

$$
\begin{aligned}
\| f(x, y) & -F(x, y)\|\leq\| f(x, y)-f(0, y)-F_{1}(x, y) \| \\
& +\left\|\frac{f(0, y)+f(0,-y)}{2}-d\right\|+\left\|\frac{f(0, y)-f(0,-y)}{2}-F_{2}(x, y)\right\|,
\end{aligned}
$$

F is a bi-Jensen mapping satisfying

$$
\begin{equation*}
\|f(x, y)-F(x, y)\| \leq \sum_{j=0}^{\infty}\left(\frac{\Phi_{1}\left(2^{j} x, y\right)}{2^{j+2}}+\frac{\Phi_{2}\left(x, 2^{j} y\right)}{2^{j+4}}\right) \tag{3.6}
\end{equation*}
$$

for all $x, y \in X \backslash A$, where F is given by

$$
F(x, y)=F_{1}(x, y)+F_{2}(x, y)+d
$$

for all $x, y \in X$. From (3.6), we know

$$
\left.\begin{array}{l}
\|(f-F)(x, y)\| \\
\begin{array}{rl}
= & \frac{1}{2} \|\left(J_{1} f-J_{1} F\right)((k+2) x,-k x, y)+(f-F)((k+2) x, y) \\
& +(f-F)(-k x, y) \|
\end{array} \\
\leq \frac{1}{2}\left\|J_{1} f((k+2) x,-k x, y)\right\|+\frac{1}{2}\|(f-F)((k+2) x, y)\| \\
\\
\quad+\frac{1}{2}\|(f-F)(-k x, y)\|
\end{array}\right] \begin{aligned}
\leq & \frac{1}{2} \varphi((k+2) x,-k x, y)+\sum_{j=0}^{\infty}\left(\frac{\Phi_{1}\left(2^{j}(k+2) x, y\right)}{2^{j+3}}+\frac{\Phi_{2}\left((k+2) x, 2^{j} y\right)}{2^{j+5}}\right) \\
+ & \sum_{j=0}^{\infty}\left(\frac{\Phi_{1}\left(-2^{j} k x, y\right)}{2^{j+3}}+\frac{\Phi_{2}\left(-k x, 2^{j} y\right)}{2^{j+5}}\right)
\end{aligned}
$$

for all $x \neq 0, y \in X \backslash A$ and $k \in \mathbb{N}$. As taking $k \rightarrow \infty$, we get

$$
f(x, y)=F(x, y)
$$

for all $x \neq 0, y \in X \backslash A$. Using the following three equalities

$$
\begin{gathered}
(f-F)(0, y)=\frac{1}{2}\left(\left(J_{1} f-J_{1} F\right)(k x,-k x, y)+(f-F)(k x, y)\right. \\
+(f-F)(-k x, y))
\end{gathered}
$$

for all $y \in X \backslash A$ and $k \in \mathbb{N}$ with $k x \in X \backslash A$,

$$
\begin{aligned}
(f-F)(x, y) & =\frac{1}{2}\left(\left(J_{2} f-J_{2} F\right)\left(x,\left(k^{\prime}+2\right) y,-k^{\prime} y\right)\right. \\
& \left.+(f-F)\left(x,\left(k^{\prime}+2\right) y\right)+(f-F)\left(x,-k^{\prime} y\right)\right) \\
(f-F)(x, 0) & =\frac{1}{2}\left(\left(J_{2} f-J_{2} F\right)\left(x, k^{\prime} y,-k^{\prime} y\right)\right. \\
& \left.+(f-F)\left(x, k^{\prime} y\right)+(f-F)\left(x,-k^{\prime} y\right)\right)
\end{aligned}
$$

for all $x \in X \backslash A, y \neq 0$ and $k \in \mathbb{N}$ with $k^{\prime} y \in X \backslash A$, we easily get the desired result.

Corollary 3.5. Let p, q, θ be fixed positive real numbers with $p, q<$ 0 and let X a normed space. If $f: X \times X \rightarrow Y$ is a mapping satisfying

$$
\begin{align*}
& \left\|J_{1} f(x, y, z)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)\|z\|^{q}, \tag{3.7}\\
& \left\|J_{2} f(x, y, z)\right\| \leq \theta\|x\|^{p}\left(\|y\|^{q}+\|z\|^{q}\right) \tag{3.8}
\end{align*}
$$

for all $\|x\|,\|y\|,\|z\| \geq 1$, then there exists a unique bi-Jensen mapping $F: X \times X \rightarrow Y$ such that

$$
f(x, y)=F(x, y)
$$

for all $\|x\|,\|y\| \geq 1$.
Remark 3.6. Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be the map defined by

$$
f(x, y):= \begin{cases}0, & \text { for } \quad\|x\| \geq 1 \text { or } \quad\|y\| \geq 1 \\ 1, & \text { for }\|x\|,\|y\|<1 .\end{cases}
$$

Then f is not a bi-Jensen map, but satisfies (3.7) and (3.8) for all $\|x\|,\|y\|,\|z\|>1$.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[2] J.-H. Bae and W.-G. Park, On the solution of a bi-Jensen functional equation and its stability, Bull. Korean Math. Soc. 43 (2006), 499-507.
[3] G. L. Forti, An existence and stability theorem for a class of functional equations, Stochastica 4 (1980), 23-30.
[4] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. and Appl. 184 (1994), 431-436.
[5] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
[6] K.-W. Jun and H.-M. Kim, Remarks on the stability of additive functional equation, Bull. Korean Math. Soc. 38 (2001), 679-687.
[7] K.-W. Jun, Y.-H. Lee and Y.-S. Cho, On the generalized Hyers-Ulam stability of a Cauchy-Jensen functional equation, Abstract Appl. Anal. (2007), ID 35351, 15 pages.
[8] K.-W. Jun, Y.-H. Lee and J.-H. Oh, On the Rassias stability of a bi-Jensen functional equation, J. Math. Ineq. 2 (2008), 363-375.
[9] S.-M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), 3137-3143.
[10] G.-H. Kim and Y.-H. Lee, Hyers-Ulam stability of a bi-Jensen functional equation, submitted.
[11] H.-M. Kim, On the stability problem for a mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl. 324 (2006), 358-372.
[12] Y.-H. Lee and K.-W. Jun, On the stability of approximately additive mappings, Proc. Amer. Math. Soc. 128 (2000) 1361-1369.
[13] L. Maligranda, A result of Tosio Aoki about a generalization of Hyers-Ulam stability of additive functions-a question of priority, Aequationes Math. $\mathbf{7 5}$ (2008), 289-296.
[14] C.-G. Park, Linear functional equations in Banach modules over a C^{*}-algebra, Acta Appl. Math. 77 (2003), 125-161.
[15] W.-G. Park and J.-H. Bae, On a Cauchy-Jensen functional equation and its stability, J. Math. Anal. Appl. 323 (2006), 634-643.
[16] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[17] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1968, p. 63.
*
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: kwjun@cnu.ac.kr

**
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: annanS@hanmail.net

Department of Mathematics Education
Gongju National University of Education
Gongju 314-711, Republic of Korea
E-mail: yanghi2@hanmail.net

[^0]: Received May 18, 2009; Accepted August 14, 2009.
 2000 Mathematics Subject Classification: Primary 39B62, 39B72, 39B82.
 Key words and phrases: Hyers-Ulam stability, bi-Jensen functional equation.
 Correspondence should be addressed to Yang-Hi Lee, yanghi2@hanmail.net.

