COMMON STATIONARY POINTS FOR CONTRACTIVE TYPE MULTIVALUED MAPPINGS

Shin Min Kang*, Ming Jia**, Zeqing Liu*** and Young Chel Kwun****

Abstract

Several common stationary point theorems for two classes of contractive type multivalued mappings in a complete bounded metric space are given. The results presented in this paper generalize and extend some known results in literature.

1. Introduction

Let (X, d) be a metric space and $B(X)$ denote the set of all nonempty bounded subsets of X.

For $A, B \in X$, define $\delta(A, B)=\sup \{d(a, b): a \in A, b \in B\}$ and $\delta(A)=$ $\delta(A, A)$. If A consists of a single point a, we write $\delta(A, B)=\delta(a, B)$. If B also consists of a single point b, we write $\delta(A, B)=\delta(a, b)=d(a, b)$.

Let $\mathbb{R}^{+}=[0,+\infty), \mathbb{N}$ and ω denote the sets of positive integers and nonnegative integers, respectively. Let $\Phi=\left\{\phi: \phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\right.$is an upper semicontinuous and nondecreasing function satisfying $\phi(t)<t$ for each $t>$ $0\}$.

Let F and G be multivalued mappings from (X, d) into $B(X)$. A point $x \in X$ is called a common stationary point of F and G if $F x=G x=\{x\}$. For $A \subseteq X$, let $F A=\bigcup_{a \in A} F a$ and $G F A=G(F A)$. The mappings F and G are said to commute if $F G x=G F x$ for all $x \in X$.

Define $C_{F}=\{T: T$ is a mapping of from X into $B(X)$ which commutes with $F\}$. It follows that $C_{F} \supseteq\left\{F^{n}: n \in \omega\right\}$, where $F^{0} x=\{x\}$ for all $x \in X$.

[^0]In 1983, Fisher [4] established a common fixed point theorem for continuous and commuting mappings F and G from (X, d) into $B(X)$ satisfying

$$
\begin{align*}
& \delta\left(F^{p} G^{p} x, F^{p} G^{p} y\right) \\
& \leq c \max \left\{\delta\left(F^{q} G^{r} x, F^{s} G^{t} y\right), \delta\left(F^{q} G^{r} x, F^{s} G^{t} x\right),\right. \tag{1.1}\\
& \left.\quad \delta\left(F^{q} G^{r} y, F^{s} G^{t} y\right): 0 \leq q, r, s, t \leq p\right\}
\end{align*}
$$

for all $x, y \in X$, where $0 \leq c<1$ and p is a fixed positive integer.
In 1994, Ohta and Nikaido [6] obtained the existence of fixed point for a continuous self mapping f on (X, d) satisfying

$$
\begin{equation*}
d\left(f^{k} x, f^{k} y\right) \leq c \delta\left(\left\{f^{i} t: t \in\{x, y\}, i \in \omega\right\}\right) \tag{1.2}
\end{equation*}
$$

for all $x, y \in X$, where $0 \leq c<1$ and k is a fixed positive integer.
In 2000, Liu and Kang [5] proved some common stationary point theorems for commuting mappings F and G from (X, d) into $B(X)$ satisfying one of the following conditions:

$$
\begin{equation*}
\delta\left(F^{p} G^{p} x, F^{q} G^{q} y\right) \leq \phi\left(\delta\left(\bigcup_{D \in C_{F G}} D\{x, y\}\right)\right) \tag{1.3}
\end{equation*}
$$

for all $x, y \in X$, where $\phi \in \Phi$ and p, q are fixed positive integers;

$$
\begin{equation*}
\delta\left(F^{p} x, G^{q} y\right) \leq \phi\left(\delta\left(\bigcup_{D \in C_{F} \cap C_{G}} D\{x, y\}\right)\right) \tag{1.4}
\end{equation*}
$$

for all $x, y \in X$, where $\phi \in \Phi$ and p, q are fixed positive integers.
The purpose of the paper is to study the existence of common stationary points for the commuting multivalued mappings F and G from (X, d) into $B(X)$ satisfying one of the conditions below:

$$
\begin{align*}
& \delta\left(F^{p} G^{q} x, F^{s} G^{t} y\right) \\
& \leq \phi\left(\delta\left(\bigcup_{D \in C_{F} \cap C_{G}} D\left(\bigcup\left\{F^{m} G^{r} u: u \in\{x, y\}, m, r \in \omega\right\}\right)\right)\right) \tag{1.5}
\end{align*}
$$

for all $x, y \in X$, where $\phi \in \Phi$ and p, q, s, t are fixed nonnegative integers satisfying $p+q \geq 1$ and $s+t \geq 1$;

$$
\begin{equation*}
\delta\left(F^{p} x, G^{q} y\right) \leq \phi\left(\delta\left(\bigcup_{D \in C_{F}} \bigcup_{m \in \omega} D F^{m} x, \bigcup_{E \in C_{G}} \bigcup_{r \in \omega} E G^{r} y\right)\right) \tag{1.6}
\end{equation*}
$$

for all $x, y \in X$, where $\phi \in \Phi$ and p, q are fixed nonnegative integers satisfy$\operatorname{ing} p+q \geq 1$. Under certain conditions, we establish two common stationary point theorems for the contractive type multivalued mappings F and G satisfying (1.5) and (1.6), respectively. Our results extend and unify several results due to Fisher $[1,2,4]$ and Ohta and Nikaido [6].

It is evident that the conditions (1.5) and (1.6) completely independent of each other.

Recall some concepts and result in $[3,7]$.
Definition 1.1. ([3]) Let $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of sets in $B(X)$ and $A \in B(X)$. The sequence $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ is said to converge to the set A if (1) each point $a \in A$ is the limit of some convergent sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$, where $a_{n} \in A_{n}$ for $n \in \mathbb{N}$;
(2) for arbitrary $\epsilon>0$, there exists $k \in \mathbb{N}$ such that $A_{n} \subseteq A_{\epsilon}$ for $n>k$, where A_{ϵ} is the union of all open spheres with centers in A and radius ϵ.

Definition 1.2. ([3]) Let F be a multivalued mapping of (X, d) into $B(X)$. The mapping F is said to be continuous in X if whenever $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of points in X converging to $x \in X$, the sequence $\left\{F x_{n}\right\}_{n \in \mathbb{N}}$ in $B(X)$ converges to $F x \in B(X)$.

Lemma 1.1. ([3]) If $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ are sequences of bounded subsets of a complete metric space (X, d) which converge to the bounded subsets A and B, resp., then the sequence $\left\{\delta\left(A_{n}, B_{n}\right)\right\}_{n \in \mathbb{N}}$ converges to $\delta(A, B)$.

Lemma 1.2. ([7]) Let $\phi \in \Phi$. Then $\phi(t)<t$ for each $t>0$ if and only if $\lim _{n \rightarrow \infty} \phi^{n}(t)=0$, where ϕ^{n} denotes the n-times composition of ϕ.

2. Common stationary points

We are now ready to prove our main results.
Theorem 2.1. Let (X, d) be a complete bounded metric space, F and G be continuous and commuting mappings from (X, d) into $B(X)$ satisfying
(1.5). Then F and G have a unique common stationary point $z \in X$ and the sequence $\left\{F^{n} G^{n} x\right\}_{n \in \omega}$ converges to $\{z\}$ for all $x \in X$.

Proof. Let A, B be in $B(X)$. By (1.5) we have

$$
\begin{aligned}
& \delta\left(F^{p} G^{q} a, F^{s} G^{t} b\right) \\
& \quad \leq \phi\left(\delta\left(\bigcup_{D \in C_{F} \cap C_{G}} D\left(\bigcup\left\{F^{m} G^{r} u: u \in\{a, b\}, m, r \in \omega\right\}\right)\right)\right)
\end{aligned}
$$

for all $a \in A, b \in B$, which implies that

$$
\begin{align*}
& \delta\left(F^{p} G^{q} A, F^{s} G^{t} B\right) \tag{2.1}\\
& \quad \leq \phi\left(\delta\left(\bigcup_{D \in C_{F} \cap C_{G}} D\left(\bigcup\left\{F^{m} G^{r}(A \cup B): m, r \in \omega\right\}\right)\right)\right)
\end{align*}
$$

Let $M=\delta(X), k=p+q+s+t$ and $X_{n}=F^{n} G^{n} X$ for each $n \in \omega$. Choose $x_{n} \in X_{n}$ for each $n \in \omega$. Let n be fixed in \mathbb{N}. It is clear that it can be written as

$$
\begin{equation*}
n=k j_{n}+i_{n}, \quad 0 \leq i_{n}<k, j_{n} \in \omega \tag{2.2}
\end{equation*}
$$

It follows from (2.1) and (2.2) that

$$
\begin{aligned}
& \delta\left(X_{n}\right) \\
& =\delta\left(F^{n} G^{n} X, F^{n} G^{n} X\right) \\
& =\delta\left(F^{p} G^{q}\left(F^{k+i_{n}-p} G^{k+i_{n}-q} X_{k\left(j_{n}-1\right)}\right),\right. \\
& \\
& \left.\quad F^{s} G^{t}\left(F^{k+i_{n}-s} G^{k+i_{n}-t} X_{k\left(j_{n}-1\right)}\right)\right) \\
& \leq \phi\left(\delta \left(\bigcup _ { D \in C _ { F } \cap C _ { G } } D \left(\bigcup \left\{F ^ { m } G ^ { r } \left(F^{k+i_{n}-p} G^{k+i_{n}-q} X_{k\left(j_{n}-1\right)}\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left.\quad \bigcup F^{k+i_{n}-s} G^{k+i_{n}-t} X_{k\left(j_{n}-1\right)}\right): m, r \in \omega\right\}\right)\right)\right) \\
& =\phi\left(\delta \left(\bigcup _ { D \in C _ { F } \cap C _ { G } } \bigcup \left\{F^{k\left(j_{n}-1\right)} G^{k\left(j_{n}-1\right)} F^{k+i_{n}-p+m} G^{k+i_{n}-q+r} D X\right.\right.\right. \\
& \left.\left.\left.\quad \bigcup F^{k\left(j_{n}-1\right)} G^{k\left(j_{n}-1\right)} F^{k+i_{n}-s+m} G^{k+i_{n}-t+r} D X: m, r \in \omega\right\}\right)\right) \\
& \leq \phi\left(\delta\left(X_{k\left(j_{n}-1\right)}\right)\right),
\end{aligned}
$$

which together with $X_{n} \subseteq X_{n-1}$ yields that

$$
\begin{align*}
\delta\left(X_{n}\right) & \leq \delta\left(X_{k j_{n}}\right) \leq \phi\left(\delta\left(X_{k\left(j_{n}-1\right)}\right)\right) \\
& \leq \cdots \leq \phi^{j_{n}-1}\left(\delta\left(X_{k}\right)\right) \leq \phi^{j_{n}}(M) \tag{2.3}
\end{align*}
$$

For any $m>n>k$, by (2.2) and (2.3) we have

$$
\begin{equation*}
d\left(x_{n}, x_{m}\right) \leq \delta\left(X_{n}, X_{m}\right) \leq \delta\left(X_{n}\right) \leq \phi^{j_{n}}(M) . \tag{2.4}
\end{equation*}
$$

It follows from (2.4) and $\phi \in \Phi$ that $\left\{x_{n}\right\}_{n \in \omega}$ is a Cauchy sequence. By completeness of X we infer that there exists a point $z \in X$ such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$.

It follows from (2.2) and (2.3) that

$$
\begin{aligned}
\delta\left(z, X_{n}\right) & \leq d\left(z, x_{m}\right)+\delta\left(x_{m}, X_{n}\right) \leq d\left(z, x_{m}\right)+\delta\left(X_{n}\right) \\
& \leq d\left(z, x_{m}\right)+\phi^{j_{n}}(M)
\end{aligned}
$$

for $m, n \in \mathbb{N}$ with $m>n$. Letting m tend to infinity, we obtain that

$$
\begin{equation*}
\delta\left(z, X_{n}\right) \leq \phi^{j_{n}}(M), \quad \forall n \in \mathbb{N} . \tag{2.5}
\end{equation*}
$$

Since F is continuous and $x_{n} \rightarrow z$ as $n \rightarrow \infty$, it follows that $\left\{F x_{n}\right\}_{n \in \omega}$ converges to $\{F z\}$. Note that $F x_{n} \subseteq F\left(F^{n} G^{n} X\right)=F^{n} G^{n} F X \subseteq X_{n}$ for all $n \in \mathbb{N}$. It follows that

$$
\begin{equation*}
\delta\left(z, F x_{n}\right) \leq \delta\left(z, X_{n}\right), \quad \forall n \in \mathbb{N} . \tag{2.6}
\end{equation*}
$$

Taking $n \rightarrow \infty$, in view of (2.5) and (2.6), we have

$$
\delta(z, F z) \leq \phi^{j_{n}}(M) \rightarrow 0,
$$

that is, $F z=\{z\}$. Similarly, we have $G z=\{z\}$.
Suppose that F and G have a second common stationary point $w \in X$. Thus $\{u\}=F^{n} G^{n} u \subseteq X_{n}$ for $u \in\{z, w\}$ and $n \in \omega$. In view of (2.3), we infer that $d(z, w) \leq \delta\left(X_{n}\right) \leq \phi^{j_{n}}(M) \rightarrow 0 \quad$ as $n \rightarrow \infty$, which implies that $z=w$. That is, F and G have a unique common stationary point $z \in X$.

For $x \in X$ and $n \in \omega$, choose $y_{n} \in F^{n} G^{n} x$. It follows that

$$
\begin{aligned}
d\left(y_{n}, z\right) & \leq \delta\left(F^{n} G^{n} x, z\right) \leq \delta\left(X_{n}, z\right) \\
& \leq \delta\left(X_{n}\right) \leq \phi^{j_{n}}(M) \rightarrow 0 \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

which yields that $\left\{F^{n} G^{n} x\right\}_{n \in \omega}$ converges to $\{z\}$. This completes the proof.

Remark 2.1. Theorem 2.1 extends Theorem 4 in [1], Theorem 2 in [2], Theorem 1 in [4] and Theorem 3 in [6].

Theorem 2.2. Let (X, d) be a complete bounded metric space, F and G be continuous mappings from (X, d) into $B(X)$ satisfying (1.6). Then F and G have a unique common stationary point $z \in X$ and the sequences $\left\{F^{n} x\right\}_{n \in \omega}$ and $\left\{G^{n} x\right\}_{n \in \omega}$ converge to $\{z\}$ for all $x \in X$.

Proof. Let $M=\delta(X), k=p+q, X_{n}=F^{n} X$ and $Y_{n}=G^{n} X$ for every $n \in \omega$. Choose $x_{n} \in X_{n}, y_{n} \in Y_{n}$ for each $n \in \omega$. Let $n \in \mathbb{N}$ be fixed. Then, we note that (2.2) holds. In light of (1.6) and (2.2), we conclude that

$$
\begin{aligned}
\delta\left(X_{n}, Y_{n}\right)= & \delta\left(F^{n} X, G^{n} X\right) \\
= & \delta\left(F^{p}\left(F^{q+i_{n}} X_{k\left(j_{n}-1\right)}\right), G^{q}\left(G^{p+i_{n}} Y_{k\left(j_{n}-1\right)}\right)\right) \\
\leq & \phi\left(\delta \left(\bigcup_{D \in C_{F}} \bigcup_{m \in \omega} D F^{m} F^{q+i_{n}} X_{k\left(j_{n}-1\right)},\right.\right. \\
& \left.\left.\quad \bigcup_{E \in C_{G}} \bigcup_{r \in \omega} E G^{r} G^{p+i_{n}} Y_{k\left(j_{n}-1\right)}\right)\right) \\
= & \phi\left(\delta \left(\bigcup_{D \in C_{F}} \bigcup_{m \in \omega} F^{k\left(j_{n}-1\right)} F^{m+q+i_{n}} D X,\right.\right. \\
& \left.\left.\quad \bigcup_{E \in C_{G}} \bigcup_{r \in \omega} G^{k\left(j_{n}-1\right)} G^{r+p+i_{n}} E Y\right)\right) \\
\leq & \phi\left(\delta\left(X_{k\left(j_{n}-1\right)}, Y_{k\left(j_{n}-1\right)}\right)\right),
\end{aligned}
$$

which implies that

$$
\begin{align*}
\delta\left(X_{n}, Y_{n}\right) & \leq \delta\left(X_{k j_{n}}, Y_{k j_{n}}\right) \leq \phi\left(\delta\left(X_{k\left(j_{n}-1\right)}, Y_{k\left(j_{n}-1\right)}\right)\right) \\
& \leq \cdots \leq \phi^{j_{n}}(\delta(X))=\phi^{j_{n}}(M) . \tag{2.7}
\end{align*}
$$

For any $m>n>k$, by (2.2) and (2.7) we have

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq d\left(x_{n}, y_{m}\right)+d\left(y_{m}, x_{m}\right) \\
& \leq \delta\left(X_{n}, Y_{n}\right)+\delta\left(Y_{n}, X_{n}\right) \\
& \leq 2 \phi^{j_{n}}(M) \rightarrow 0 \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

which yields that $\left\{x_{n}\right\}_{n \in \omega}$ is a Cauchy sequence and hence $\lim _{n \rightarrow \infty} x_{n}=z$ for some $z \in X$ by completeness of X. Similarly, $\lim _{n \rightarrow \infty} y_{n}=w$ for some $w \in X$.

It follows from (2.2) and (2.7) that

$$
\begin{aligned}
\delta\left(z, X_{n}\right) & \leq d\left(z, x_{m}\right)+\delta\left(x_{m}, X_{n}\right) \\
& \leq d\left(z, x_{m}\right)+\delta\left(x_{m}, y_{m}\right)+\delta\left(y_{m}, X_{n}\right) \\
& \leq d\left(z, x_{m}\right)+2 \phi^{j_{n}}(M)
\end{aligned}
$$

for $m, n \in \mathbb{N}$ with $m>n$. Letting m tend to infinity, we obtain that

$$
\begin{equation*}
\delta\left(z, X_{n}\right) \leq 2 \phi^{j_{n}}(M), \quad \forall n \in \mathbb{N} \tag{2.8}
\end{equation*}
$$

As in the proof of Theorem 2.1, we conclude that $F z=\{z\}$. Similarly, $G w=\{w\}$. Furthermore, (2.2) and (2.7) ensure that

$$
\begin{aligned}
d(z, w) & =\delta(F z, G w) \leq \delta\left(X_{n}, Y_{n}\right) \\
& \leq \phi^{j_{n}}(M) \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

which gives that $z=w$. Hence $F z=\{z\}=G z$.
Suppose that F and G have a second common stationary point v. Thus $\{u\}=F^{n} u \subseteq X_{n}$ and $\{u\}=G^{n} u \subseteq Y_{n}$ for $u \in\{z, v\}$ and $n \in \omega$. In view of (2.7), we infer that

$$
d(z, v) \leq \delta\left(X_{n}, Y_{n}\right) \leq \phi^{j_{n}}(M) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

which means that $z=v$. That is, F and G have a unique common stationary point z.

For $x \in X$ and $n \in \omega$, choose $a_{n} \in F^{n} x$. It follows from (2.2) and (2.7) that

$$
\begin{aligned}
d\left(a_{n}, z\right) & \leq \delta\left(F^{n} x, z\right) \leq \delta\left(X_{n}, z\right) \\
& \leq \delta\left(X_{n}, Y_{n}\right) \leq \phi^{j_{n}}(M) \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

which implies that $\left\{F^{n} x\right\}_{n \in \omega}$ converges to $\{z\}$. Similarly, $\left\{G^{n} x\right\}_{n \in \omega}$ converges to $\{z\}$. This completes the proof.

Acknowledgements. The authors thank the referees for useful comments and suggestions.

References

[1] B. Fisher, Results on common fixed points on bounded metric spaces, Math. Sem. Notes, Kobe Univ. 7 (1979), 73-80.
[2] B. Fisher, Set-valued mappings on bounded metric spaces, Indian J. Pure Appl. Math. 11 (1980), 8-12.
[3] B. Fisher, Common fixed points of mappings and set-valued mappings, Rostock. Math. Kolloq. 18 (1981), 69-77.
[4] B. Fisher, Common fixed points of set-valued mappings on bounded metric spaces, Math. Sem. Notes, Kobe Univ. 11 (1983), 307-311.
[5] Z. Liu and S. M. Kang, Common stations points of multivalued mappings on bounded metric spaces, Internet. J. Math. Math. Sci. 24 (2000), no. 11, 773-779.
[6] M. Ohta and G. Nikaido, Remarks on fixed point theorems in complete metric spaces, Math. Japonica 39 (1994), 287-290.
[7] S. P. Singh and B. A. Meade, On common fixed point theorems, Bull. Austral. Math. Soc. 16 (1977), 49-53.
*
Department of Mathematics and RINS
Gyeongsang National University
Jinju 660-701, Republic of Korea
E-mail: smkang@gnu.ac.kr
**
Department of Mathematics
Liaoning Normal University
Dalian, Liaoning 116029, People's Republic of China
E-mail: mingjia417@163.com

Department of Mathematics
Liaoning Normal University
Dalian, Liaoning 116029, People's Republic of China
E-mail: zeqingliu@dl.cn

Department of Mathematics
Dong-A University
Pusan 614-714, Republic of Korea
E-mail: yckwun@daunet.donga.ac.kr

[^0]: Received May 13, 2009; Accepted August 14, 2009.
 2000 Mathematics Subject Classifications: Primary 54H25.
 Key words and phrases: common stationary point, contractive type multivalued mappings, commuting mappings, complete bounded metric space.

 Correspondence should be addressed to Young Chel Kwun, yckwun@daunet.donga.ac.kr.
 *** This work was supported by the Science Research Foundation of Educational Department of Liaoning Province (2009A419).

