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BURST-ERROR-CORRECTING BLOCK CODE USING
FIBONACCI CODE

Gwang-Yeon Lee*, Dug-Hwan Choi**, and Jin-Soo Kim***

Abstract. The errors take place in the communication channel
but they are often burst-error types. From properties of the Fi-
bonacci code, it is not difficult to detect the burst-errors accom-
panying with this code. Fibonacci codes for correcting the double-
burst-error patterns are presented. Given the channel length with
the double-burst-error type, Fibonacci code correcting these errors
is constructed by a simple formula.

1. Introduction

The Fibonacci sequence is a sequence of positive integers arranged in
nondecreasing order, which is very useful tool in various areas. In [4],
authors suggested useful identities in combinatorial counting numbers
via Fibonacci numbers.

Let U = (u1, u2, · · · ) be a sequence of positive integers arranged in
nondecreasing order. We define the sequence U to be complete if every
positive integer n is the sum of some subsequence of U , that is,

n =
∞∑

i=1

aiui where ai = 0 or 1.

Theorem 1.1. Let U = (u1, u2, . . .) be a sequence. If u1 = 1 and
un+1 ≤ 2un, then the sequence U is complete.

From the above theorem 1.1, it can be easily shown that, the well
known fact, the Fibonacci sequence is complete(see [1]).

Since every positive integer is the sum of its subsequence, we can
construct a Fibonacci code, introduced in §II of [2].
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Let fα, α ≥ 2, be defined by

· · · bα+1bαbα−1 · · · b3b2

where bα = 1 and bβ = 0 for any α 6= β ≥ 2. Each α-th Fibonacci
number Fα is expressed as fα in the binary numbers. 000 is defined to
satisfy bβ = 0 for each β ≥ 2. We define the operation +2 or

∑
compo-

nentwise as the exclusive or. Let (V,+2,000) be the algebra generated by
the set {fα}α≥2. Each element v ∈ V has an expression v =

∑
α≥2 b̂αfα

where b̂α ∈ {0, 1}. Since Fibonacci sequence is complete, every positive
number can be expressed as a sum of some elements in the set {Fα}.
Because of the property

∀ 3 ≤ α ∈ N, Fα = Fα−1 + Fα−2,

the addition of the two consecutive Fibonacci numbers is excluded.
When we define 0 =

∑∑∑
α≥2 bαFα where bα = 0 for each α ≥ 2, ev-

ery element in the monoid (N, +, 0) has a binary expression in {Fα}
without the consecutive ones. Then we can find the injection

ϕ : (N, +, 0) → (V,+2,000);n =
∑∑∑

α≥2 bαFα 7→
∑

α≥2
bαfα

The element in the set F = {ϕ(n)|n ∈ N} is called the Fibonacci code.
We define the partial order v in the set V . By a unique expression

v ∈ V , let

v =
∑

α≥2

bαfα and v̂ =
∑

α≥2

b̂αfα ∈ V

with bα, b̂α ∈ {0, 1}. v v v̂ is defined to satisfy

∀α ≥ 2, bα ≤ b̂α

The subordinate set Wv of W ⊂ V is defined by the set {v ∈ V | ∃w ∈
W satisfying v v w}. When W = Wv, W is called self-subordinate. An
error pattern is defined by a self-subordinate subset of (V,v) containing
{fα}α≥2.

We can give the ordering for the error patterns by the containment.
Because of the self-subordinate, codes to correct the error pattern W
have to do for any error pattern U contained in W . ( [3], §3 )

Example 1.2. Here is the single-error pattern.

S1 = {δfα| α ≥ 2; δ ∈ {0, 1}}
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The double-burst-error patterns are described as follows :

B2 = {δ1fα +2 δ2fα+1| α ≥ 2; δj ∈ {0, 1} for j = 1, 2}

`B2 = {
∑̀

i=1

(δαifαi +2 δαi+1fαi+1) | 2 ≤ α1 ≤ α1 + 1 ≤ α2

≤ · · · ≤ α` ≤ α` + 1, |αi − α(i+1)| ≥ 3;

δt ∈ {0, 1} for t ∈ {α1, . . . , α` + 1} }
The burst error pattern E (B2 or `B2) in Example 1.2 is not contained

in F . Thus F +2 E = {f +2 ε|f ∈ F and ε ∈ E} is the subset of the
algebra (V,+2, 0) containing F .

Example 1.3. Let C1 ⊂ V be a subset containing f2 +2 f4 +2

f6 and f4 +2 f6 +2 f8. This can not be a single-error-correcting code
because

(f2 +2 f4 +2 f6) +2 (f2) = f4 +2 f6 = (f4 +2 f6 +2 f8) +2 (f8)

The subset C2 ⊂ V containing f2 +2 f5 +2 f7 and f3 +2 f5 +2 f8 can
not be a B2-error-correcting code because

(f2+2f5+2f7)+2(f2+2f3) = f3+2f5+2f7 = (f3+2f5+2f8)+2(f7+2f8)

Let I = (bn−1, . . . , b3, b2) and J = (cn−1, . . . , c3, c2) denote two (ar-
bitrary) binary numbers. The Hamming distance between I and J , de-
noted by H(I, J), is the number of bits where the two binary numbers
differ. It is straightforward to define the Fibonacci cube based on the
Fibonacci codes.

Let N denote an integer, where 1 ≤ N ≤ Fn for some n. Let IF

and JF denote the Fibonacci code of i and j, where 0 ≤ i, j ≤ N − 1.
The Fibonacci cube of size N is a graph (V (N), E(N)), where V (N) =
{0, 1, . . . , N − 1} and (i, j) ∈ E(N) if and only if H(IF , JF ) = 1.

Let IB and JB denote the ordinary binary representation of integers
i and j. A Boolean cube of dimension n, denoted by Bn, is a graph
(Vn, En), where Vn = {0, 1, 2, . . . , 2n − 1} and (i, j) ∈ En if and only if
H(IB, JB) = 1.

For a positive integer n ≥ 2, a Fibonacci cube of order n, denoted by
Γn, is a graph consisting recursively of two disjoint subgraphs Γn−1 and
Γn−2, which are of unequal sizes in general. Each node in Γn−2 is then
connected to a counterpart node in Γn−1. As the basis, Γ0 is an empty
graph and Γ1 is a graph with a single node. It is well known that the
Fibonacci cube contains about 1

5 fewer edges than the Boolean cube for
the same number of nodes.
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2. Fibonacci double-burst-error-correcting code

It is presented Fibonacci double-burst-error-correcting block codes
with respect to some double-burst-error patterns.

Definition 2.1. For any k ≥ 1 with α ≥ 4(k + 1), we define

Fk(α) = ϕ(Fα − Fα−(4k+1))

=
∑2k+1

i=1
fαi

where α1 = α−(4k+2) and αi = α1+3+2(i−2) for each 2k+1 ≥ i ≥ 2.
We will use the notation {Fk(α)} = {α1, α2, . . . , α2k+1}.

Example 2.2. Here are some Fibonacci codes which we are interested
in.

F1(8) = ϕ(F8 − F3) = f2 +2 f5 +2 f7 = 0000000101001

F1(9) = ϕ(F9 − F4) = f3 +2 f6 +2 f8 = 0000001010010

F1(10) = ϕ(F10 − F5) = f4 +2 f7 +2 f9 = 0000010100100

F2(12) = ϕ(F12 − F3) = f2 +2 f5 +2 f7 +2 f9 +2 f11 = 0001010101001

F2(13) = ϕ(F13 − F4) = f3 +2 f6 +2 f8 +2 f10 +2 f12 = 0010101010010

F2(14) = ϕ(F14 − F5) = f4 +2 f7 +2 f9 +2 f11 +2 f13 = 0101010100100

From the property of +2, it is clear that

{Fk(α) +2 Fk(β)} = {{Fk(α)} ∪ {Fk(β)}} \ {{Fk(α)} ∩ {Fk(β)}}
Lemma 2.3. Assume that α ≤ β. Then we have

|{Fk(α) +2 Fk(β)}| =





0 if α = β,

≥ 2 · 2k = 4k if |α− β| is odd,

2 · {1 + |α−β|
2 } ≥ 4 otherwise.

Proof. We need to investigate the case {Fk(α)} ∩ {Fk(β)} 6= ∅. Let
I2k+1 = {i ∈ N|1 ≤ i ≤ 2k + 1}. When |{Fk(α)} ∩ {Fk(β)}| 6= 0,
there is at least one pair of numbers (i, j), 1 ≤ j ≤ i ≤ 2k + 1, in
I2k+1 × I2k+1 satisfying αi = βj . When i = j, it is clear that α = β. In
case of αi = βj with 1 = j < i, |{Fk(α)}∩{Fk(β)}| = 1 because, for each
2 ≤ ` ≤ 2k+1, β` = αi+3+2(`−2) 6= αt with 1 ≤ t ≤ 2k+1. If αi = βj

with 2 ≤ j < i, then |{Fk(α)}∩{Fk(β)}| = 2k− (i− j) because, for each
2 ≤ ` ≤ 2k − (i− j), β` = β2 + 2(`− 2) = αi−(j−2) + 2(`− 2) = αi−j+`.

Consider the number |α − β|. For each i ∈ I2k+1, βi − αi = |α − β|.
Let |α − β| be odd. If |α − β| = 3 + 2(i − 2) for 2 ≤ i ≤ 2k + 1, then
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β1 = α1 + |α − β| = αi. Otherwise {Fk(α)} ∩ {Fk(β)} = ∅. Thus
|{Fk(α)} ∩ {Fk(β)}| ≤ 1 when |α − β| is odd. If |α − β| is even, then
it never happens that β1 = αi with some i, 2 ≤ i ≤ 2k + 1, because
β1−α1 = 3+2(i−2) = |α−β|. When |α−β| is even with 0 < |α−β| ≤
4k − 2, |{Fk(α)} ∩ {Fk(β)}| 6= 0 because

β2 = α2 + |α− β| = α2+(|α−β|/2)

Thus |{Fk(α)}∩{Fk(β)}| = 2k− |α−β|
2 . If |α−β|, which is greater than 4k

−2, is even, then {Fk(α)} ∩ {Fk(β)} = ∅.
From the formula

|{Fk(α) +2 Fk(β)}| = 2 · {(2k + 1)− |{Fk(α)} ∩ {Fk(β)}|},
the result follows.

Theorem 2.4. For any fixed integer k ≥ 1, F1
k = {000, Fk(α)|α ≥

4(k + 1)} is a B2-error-correcting block code.

Proof. Assume there are at least one pair (Fk(α), Fk(β)) , α 6= β ,
satisfying

Fk(α) +2 ε1 = Fk(β) +2 ε2 for some ε1, ε2 in B2

There exist i, j ∈ N−{1} and δm, σm ∈ {0, 1}, for m ∈ {1, 2}, such that
Fk(α) +2 ε1 = Fk(α) +2 δ1fi +2 δ2fi+1

= Fk(β) +2 σ1fj +2 σ2fj+1 = Fk(β) +2 ε2

Thus Fk(α)+2 Fk(β) = ε1 +2 ε2 = δ1fi +2 δ2fi+1 +2 σ1fj +2 σ2fj+1. Since
α 6= β, |α− β| 6= 0.

Case 1. Let |α − β| be odd. By Lemma 2.3, we need to show only
for k = 1. Because |α − β| is odd, |{F1(α)} ∩ {F1(β)}| ≤ 1 so that
β1 = αi for 1 < i ≤ 3. Thus {F1(α)+2 F1(β)} = {α1, α2( or α3), β2, β3}.
Then F1(α) +2 F1(β) is not the type of ε1 +2 ε2 because (α2, β2, β3) =
(α1 + 3, α1 + 8, α1 + 10) and (α3, β2, β3) = (α1 + 5, α1 + 6, α1 + 8).

Case 2. Let |α − β| 6= 0 be even. By Lemma 2.3, we need only to
show for |α − β| = 2. i.e. |{Fk(α)} ∩ {Fk(β)}| = 2k − |α−β|

2 = 2k − 1
and, for 2 ≤ i ≤ 2k, βi − αi = |α− β| = 2 so that βi = αi + 2 = αi+1.

Thus, for any k ≥ 1, {Fk(α) +2 Fk(β)} = {α1, β1, α2, β2k+1} because
βi = αi+1 with 2 ≤ i ≤ 2k. {Fk(α) +2 Fk(β)} is not in the form of
ε1 +2 ε2 since (β1, α2, β2k+1) = (α1 + 2, α1 + 3, α1 + (4k + 3)).

It is easy to show that there is no α ≥ 4(k + 1) with k ≥ 1 such
that 000 +2 ε1 = Fk(α) +2 ε2 for some ε1, ε2 in B2, because {Fk(α)} =
{α1, . . . , α2k+1} and Fk(α) can not be in B2 +2 B2 = {ε1 +2 ε2|ε1, ε2 ∈
B2}.
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Corollary 2.5. For any fixed integer k ≥ 1, S1
k = F1

k ∪{f2 +2 f4 +2

f6} is also a single-error-correcting block code.

Proof. It is easy to show that 000+2(f2+2f4+2f6) can not be in S1+2S1.
If we can show that {(f2 +2 f4 +2 f6)+2 S1}∩{Fk(α)+2 S1} = ∅ for any
Fk(α) ∈ F1

k , then S1
k is a single-error-correcting block code because also

is F1
k since S1 ⊂ B2.

Assume that there exists some Fk(α) ∈ F1
k satisfying

(f2 +2 f4 +2 f6) +2 Fk(α) ∈ S1 +2 S1

Since an element of S1 +2 S1 has at most Hamming distance 2, (f2 +2

f4 +2 f6) +2 Fk(α) also does. By Definition 2.1, each αi − α1 for i ≥ 2
, in {Fk(α)}, is 3 + 2(i − 2). When ∅ 6= {Fk(α)} ∩ {2, 4, 6}, it has only
order 1. Thus (f2 +2 f4 +2 f6) +2 Fk(α) has at least Hamming distance
4. This is a contradiction.

From Theorem 2.4, we pursue a conclusion with `B2 error pattern
for ` ≥ 2.

Theorem 2.6. For any fixed integer k ≥ 2 with 2 ≤ ` ≤ k, F `
k =

{000, Fk(α)|α = 4(k+1)+2`(n−1) or 4(k+1)+2`(n−1)+1 for 1 ≤ n ∈ N}
is a `B2-error-correcting block code.

Proof. Assume there is at least one pair (Fk(α), Fk(β)) , α 6= β ,
satisfying

Fk(α) +2 ε1 = Fk(β) +2 ε2 for some ε1, ε2 in `B2

Thus Fk(α)+2Fk(β) = ε1+2ε2 ∈ `B2+2`B2. Since α 6= β, |α−β| 6= 0.
Case 1. Let |α − β| be odd with α ≤ β. By Lemma 2.3, we need

to show only for |{Fk(α)} ∩ {Fk(β)}| = 1. For each i, 1 ≤ i ≤ 2k + 1,
βi−αi = |α−β| = 2`m+1 for some integer m > 0. β1 = α1 +2`m+1 =
α`m+1 . When {Fk(α)} ∩ {Fk(β)} is β1 = α`m+1 ,

{Fk(α) +2 Fk(β)}
={α1, . . . , α`m, α`m+2, β2, . . . , α2k+1, β2k−`m+1, β2k−`m+2, . . . , β2k+1}

where βj = αk+j +1 for each 2 ≤ j ≤ 2k− `m+1. Thus Fk(α)+2 Fk(β)
can not be in `B2 +2 `B2.

Case 2. Let |α − β| = 2`m for m ≥ 1. If |α − β| > 4k − 2, then
|{Fk(α) +2 Fk(β)}| = 4k + 2 so that Fk(α) +2 Fk(β) can not be in
`B2 +2 `B2. If |α− β| ≤ 4k − 2, then

{Fk(α) +2 Fk(β)} = {α1, . . . , α`m, β1, α`m+1, β2k−`m+2, . . . , β2k+1}
Thus Fk(α) +2 Fk(β) can not be in `B2 +2 `B2.



Fibonacci BEC block code 373

Since any Fk(α) ∈ F `
k is not in `B2 +2 `B2 = {ε1 +2 ε2|ε1, ε2 ∈ `B2},

it is not possible that 000 +2 ε1 = Fk(α) +2 ε2 for some ε1, ε2 in `B2.

It is necessary to find the size of F `
k with 1 ≤ ` ≤ k for a given channel

length n ≥ 4k + 3. Let brc, r ∈ R, be the largest integer less than or
equal to r.

Corollary 2.7. Given `, k, and the channel length n with 1 ≤ ` ≤
k,

|F `
k| = bn− (4k + 2)

2`
c+ bn− (4k + 3)

2`
c+ 2

Proof. The position of fα2k+1
for each codeword Fk(α) and the con-

dition α in Theorem 2.6 give the maximum number of the codewords
for the given channel length.

3. Conclusion

Fibonacci burst-error-correcting codes are presented for the various
double-burst-error type. Also their sizes depending on the channel
length is found. From the formulas in the above theorems, it is easy
to design the corresponding codes to any given double-burst-error pat-
tern and detect these errors occuring in the communication.
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