JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **22**, No. 2, June 2009

ON THE FUZZY COMPLETE NORMED LINEAR SPACE

GIL SEOB RHIE* AND IN AH HWANG**

ABSTRACT. In this paper, we introduce the notion of the complete fuzzy norm on a linear space. And we consider some relations between the fuzzy completeness and ordinary completeness on a linear space.

1. Introduction

The notions of fuzzy vector spaces and fuzzy topological vector spaces were introduced in Katsaras and Liu [4]. These ideas were modified by Katsaras [2], and in [3] Katsaras defined the fuzzy norm on a vector space. In [5] Krishna and Sarma discussed the generation of a fuzzy vector topology from an ordinary vector topology on vector space. Also Krishna and Sarma [6] observed the convergence of sequence of fuzzy points. Rhie et al. [9] introduced the notion of fuzzy α -Cauchy sequence of fuzzy points and fuzzy completeness.

In this paper, we first observe a type of the convergence of sequences as an analogy of Bag and Samanta [1] in a fuzzy normed linear space. Secondly, we introduce the notion of a complete fuzzy norm using the convergence of sequences on a linear space. And we consider some relations between the fuzzy completeness and the ordinary completeness on a linear space.

Received April 24, 2009; Accepted May 26, 2009.

²⁰⁰⁰ Mathematics Subject Classification: Primary 54A40.

Key words and phrases: fuzzy norm, equivalent fuzzy norm, convergent sequence, Cauchy sequence, fuzzy complete.

Correspondence should be addressed to Gil Seob Rhie, gsrhie@hnu.kr.

^{*}This work was supported by Hannam University Research Fund, 2009.

2. Preliminaries

Throughout this paper, X is a vector space over the field K(R or C). Fuzzy subsets of X are denoted by Greek letters in general. χ_A denotes the characteristic function of the set A.

DEFINITION 2.1. [4] For two fuzzy subset μ_1 and μ_2 of X, the fuzzy subset $\mu_1 + \mu_2$ is defined by

$$(\mu_1 + \mu_2)(x) = \lor \{\mu_1(x_1) \land \mu_2(x_2) \mid x = x_1 + x_2\}.$$

And for a scalar t of K and a fuzzy subset μ of X, the fuzzy subset $t\mu$ is defined by

$$(t\mu)(x) = \begin{cases} \mu(x/t) & \text{if } t \neq 0\\ 0 & \text{if } t = 0 \text{ and } x \neq 0\\ \vee \{\mu(y) \mid y \in X\} & \text{if } t = 0 \text{ and } x = 0. \end{cases}$$

DEFINITION 2.2. [2] $\mu \in I^X$ is said to be

1.	convex	if	$t\mu + (1-t)\mu \subseteq \mu$ for each $t \in [0,1]$
2.	balanced	if	$t\mu \subseteq \mu$ for each $t \in K$ with $ t \leq 1$
3.	absorbing	if	$ \forall \{t\mu(x) \mid t > 0\} = 1 \text{ for all } x \in X. $

DEFINITION 2.3. [2] Let (X, τ) be a topological space and $\omega(\tau) = \{f : (X, \tau) \to [0, 1] \mid f \text{ is lower semicontinuous}\}$. Then $\omega(\tau)$ is a fuzzy topology on X. This topology is called the fuzzy topology generated by τ on X. The fuzzy usual topology on K means the fuzzy topology generated by the usual topology of K.

DEFINITION 2.4. [2] A fuzzy linear topology on a vector space X over K is a fuzzy topology on X such that the two mappings

+	:	$X \times X \to X,$	$(x,y) \to x+y$
	:	$K \times X \to X,$	$(t, x) \to tx$

are continuous when K has the fuzzy usual topology and $K \times X$ and $X \times X$ have the corresponding product fuzzy topologies. A linear space with a fuzzy linear topology is called a *fuzzy topological linear space* or a *fuzzy topological vector space*.

DEFINITION 2.5. [2] Let x be a point in a fuzzy topological space X. A family F of neighborhoods of x is called a base for the system of all neighborhoods of x if for each neighborhood μ of x and each $0 < \theta < \mu(x)$, there exists $\mu_1 \in F$ with $\mu_1 \leq \mu$ and $\mu_1(x) > \theta$.

DEFINITION 2.6. [3] A fuzzy seminorm on X is a fuzzy set ρ in X which is convex , balanced and absorbing. If in addition $\wedge \{(t\rho)(x) \mid t > 0\} = 0$ for $x \neq 0$, then ρ is called a fuzzy norm.

THEOREM 2.7. [3] If ρ is a fuzzy seminorm on X, then the family $B_{\rho} = \{\theta \land (t\rho) \mid 0 < \theta \leq 1, t > 0\}$ is a base at zero for a fuzzy linear topology τ_{ρ} . The fuzzy topology τ_{ρ} is called the fuzzy topology induced by the fuzzy seminorm ρ . And a linear space equipped with a fuzzy seminorm (resp. fuzzy norm) is called a fuzzy seminormed (resp. fuzzy normed) linear space.

DEFINITION 2.8. [5] Let ρ be a fuzzy seminorm on X. $P_{\epsilon}: X \to R_+$ is defined by

$$P_{\epsilon}(x) = \wedge \{t > 0 \mid t\rho(x) > \epsilon\}$$

for each $\epsilon \in (0, 1)$.

THEOREM 2.9. [5] The P_{ϵ} is a seminorm on X for each $\epsilon \in (0, 1)$. Further P_{ϵ} is a norm on X for each $\epsilon \in (0, 1)$ if and only if ρ is a fuzzy norm on X.

3. Fuzzy convergence and fuzzy completeness

In this section, we introduce the notion of a complete fuzzy norm on a linear space. And we consider some relations between the fuzzy completeness and the ordinary completeness on a linear space.

Now, we define the convergent sequence and the Cauchy sequence in a fuzzy normed linear space as an analogy of Bag and Samanta [1, Definition 2.2, 2.3].

DEFINITION 3.1. Let (X, ρ) be a fuzzy normed linear space. A sequence $\{x_n\} \subset X$ is said to be convergent to $x \in X$ if for every t > 0and $\epsilon \in (0, 1)$, there exists a positive integer M such that $n \geq M$ implies $t\rho(x_n - x) > 1 - \epsilon$.

THEOREM 3.2. Let (X, ρ) be a fuzzy normed linear space. A sequence $\{x_n\} \subset X$ converges to $x \in X$ if and only if for every t > 0 and $\epsilon \in (0, 1)$, there exists a positive integer M such that $n \geq M$ implies $P_{1-\epsilon}(x_n - x) < t$.

Proof. Let t > 0 and $\epsilon \in (0, 1)$ be given. Since $\{x_n\}$ converges to x, there exists a positive integer M such that

 $\begin{array}{ll} n \geq M & \text{implies} & \frac{t}{2}\rho(x_n - x) > 1 - \epsilon \\ \implies & n \geq M & \text{implies} & P_{1-\epsilon}(x_n - x) \leq \frac{t}{2} < t. \end{array}$

For the converse, let t > 0 and $\epsilon > 0$ be given. Then there exists a positive integer M such that

$$\begin{array}{ll} n \geq M & \text{implies} & P_{1-\epsilon}(x_n - x) < t \\ \implies & n \geq M & \text{implies} & t'\rho(x_n - x) > 1 - \epsilon \\ & & \text{for some} & t' \in (P_{1-\epsilon}(x_n - x), t) \\ \implies & n \geq M & \text{implies} & t\rho(x_n - x) \geq t'\rho(x_n - x) > 1 - \epsilon. \end{array}$$

This completes the proof.

The next definition of a Cauchy sequence in a fuzzy normed linear space is an analogy of Bag and Samanta [1, Definition 2.3].

DEFINITION 3.3. Let (X, ρ) be a fuzzy normed linear space. A sequence $\{x_n\} \subset X$ is a Cauchy sequence if and only if for every t > 0and $\epsilon \in (0, 1)$, there exists a positive integer M such that $n, m \geq M$ implies $t\rho(x_n - x_m) > 1 - \epsilon$.

THEOREM 3.4. Let (X, ρ) be a fuzzy normed linear space. A sequence $\{x_n\} \subset X$ is a Cauchy sequence if and only if for every t > 0 and $\epsilon \in (0, 1)$, there exists a positive integer M such that $n, m \geq M$ implies $P_{1-\epsilon}(x_n - x_m) < t$.

Proof. The proof is similar to that of Theorem 3.2. We omit it. \Box

The following theorem is easily verified with elementary skills from Theorem 3.2. and Theorem 3.4.

THEOREM 3.5. Every convergent sequence in a fuzzy normed linear space is a Cauchy sequence.

Now, we introduce the complete fuzzy norm using the Cauchy sequence defined above.

DEFINITION 3.6. A fuzzy norm ρ on a linear space X is said to be fuzzy complete if every Cauchy sequence in X converges to a point in X.

LEMMA 3.7. Let $(X, \|\cdot\|)$ be a normed linear space and B the closed unit ball of X. Then every Cauchy sequence in the fuzzy normed linear space (X, χ_B) is a Cauchy sequence with respect to the ordinary norm.

Proof. Let $\{x_n\} \subset X$ be a Cauchy sequence and $\delta > 0$. Since $\{x_n\}$ is a Cauchy sequence, for this δ and for every $\epsilon \in (0, 1)$, there exists a positive integer M such that

284

On the fuzzy complete normed linear space

$$n, m \ge M \quad \text{implies} \quad \frac{\delta}{2}\chi_B(x_n - x_m) > 1 - \epsilon$$

$$\implies n, m \ge M \quad \text{implies} \quad \chi_B(\frac{2}{\delta}(x_n - x_m)) > 1 - \epsilon$$

$$\implies n, m \ge M \quad \text{implies} \quad \chi_B(\frac{2}{\delta}(x_n - x_m)) = 1$$

$$\implies n, m \ge M \quad \text{implies} \quad \parallel x_n - x_m \parallel \le \frac{\delta}{2} < \delta.$$

Therefore $\{x_n\}$ is Cauchy sequence in $(X, \|\cdot\|)$. This prove the lemma.

THEOREM 3.8. Let $(X, \|\cdot\|)$ be a Banach space. Then the fuzzy normed linear space (X, χ_B) is fuzzy complete where B is the closed unit ball of X.

Proof. Let $\{x_n\}$ be a Cauchy sequence in (X, χ_B) . Then it is a Cauchy sequence with respect to the ordinary norm $\|\cdot\|$ by the above lemma. Since $(X, \|\cdot\|)$ is complete, there exists an $x \in X$ such that $\|x_n - x_m\| \to 0$. Now, we show that $\{x_n\}$ converges to this x in (X, χ_B) . Let t > 0 and $\epsilon \in (0, 1)$. Then there exists a positive integer M such that

$$n \ge M \quad \text{implies} \quad || x_n - x || < t$$

$$\implies n \ge M \quad \text{implies} \quad || \frac{1}{t}(x_n - x) || < 1$$

$$\implies n \ge M \quad \text{implies} \quad \chi_B(\frac{1}{t}(x_n - x)) = 1$$

$$\implies n \ge M \quad \text{implies} \quad t \chi_B(x_n - x) > 1 - \epsilon.$$

That is $\{x_n\}$ converges to x, therefore (X, χ_B) is fuzzy complete. This completes the proof.

COROLLARY 3.9. The field K(R or C) with the fuzzy topology generated by the usual topology on K is a fuzzy complete normed linear space.

DEFINITION 3.10. [3] Two fuzzy seminorms ρ_1, ρ_2 on X are said to be *equivalent* iff $\tau_{\rho_1} = \tau_{\rho_2}$.

THEOREM 3.11. [9] Let $(X, \|\cdot\|)$ be a normed linear space. If ρ is a lower semi-continuous fuzzy norm on X, and has the bounded support: $\{x \in X \mid \rho(x) > 0\}$ is bounded, then ρ is equivalent to the fuzzy norm χ_B where B is the closed unit ball of X.

By Theorem 3.8. and the above theorem, we get the following theorem which is the main result of this paper.

THEOREM 3.12. If X is a Banach space and ρ is a lower semicontinuous fuzzy norm on X having the bounded support, then the fuzzy normed linear space (X, ρ) is fuzzy complete.

Gil Seob Rhie and In Ah Hwang

References

- [1] T. Bag and S. K. Samanta, *Finite dimensional fuzzy normed linear space*, J. fuzzy math. **11** (2003), no. 3, 687-705.
- [2] A. K. Katsaras, Fuzzy topological vector space I, Fuzzy sets and systems 6 (1981), 85-95.
- [3] A. K. Katsaras, Fuzzy topological vector space II, Fuzzy sets and systems 12 (1984), 143-154.
- [4] A. K. Katsaras and D. B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58 (1977), 135-146.
- [5] S. V. Krishna and K. K. M. Sarma, Fuzzy topological vector spaces topological generation and normability, Fuzzy sets and systems 41 (1991), 89-99.
- [6] S. V. Krishna and K. K. M. Sarma, Fuzzy continuity of linear maps on vector spaces, Fuzzy sets and systems 45 (1992), 341-354.
- [7] S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy sets and systems 63 (1994), 207-217.
- [8] R. Larsen, Functional analysis, Marcel Dekker, Inc. New york, 1973.
- [9] G. S. Rhie and B. M. Choi and D. S. Kim, On the completeness of fuzzy normed linear spaces, Math. Japonica 45 (1997), no. 1, 33-37.
- [10] R. H. Warren, Neighborhoods bases and continuity in fuzzy topological spaces, Rocky Mountain J. Math. 8 (1978), 459-470.

*

Department of Mathematics Hannam University Daejon 306-791, Republic of Korea *E-mail*: gsrhie@hnu.kr

**

Department of Mathematics Hannam University Daejon 306-791, Republic of Korea *E-mail*: hia@hnu.kr