THE MOD H NIELSEN NUMBER

Seung Won Kim*

Abstract

Let $f: X \rightarrow X$ be a self-map of a connected finite polyhedron X. In this short note, we say that the mod H Nielsen number $N_{H}(f)$ is well-defined without the algebraic condition $f_{\pi}(H) \subseteq H$ and that $N_{H}(f)$ is the same as the q-Nielsen number $N_{q}(f)$ in any case.

1. Introduction

Let $f: X \rightarrow X$ be a self-map of a connected finite polyhedron X. The Nielsen number $N(f)$ of f, by its homotopy invariance, provides a lower bound for the minimum number of fixed points over all maps homotopic to f. The $\bmod H$ Nielsen number $N_{H}(f)$ is a lower bound for $N(f)$ that might be easier to compute and is essential to study for the fixed point of fiber preserving maps. See [2], [3] or [5] for more details.

In 1992, Woo and Kim [4] introduced the q-Nielsen number $N_{q}(f)$ that is a generalization of the original mod H Nielsen number $N_{H}(f)$. The q-Nielsen number has an advantage for geometric questions and is defined without the condition $f_{\pi}(H) \subseteq H$ that is a requirement in the definition of the original mod H Nielsen number.

The purpose of this short note is to say that we can define the mod H Nielsen fixed point class without the condition $f_{\pi}(H) \subseteq H$, which means that $N_{H}(f)$ is defined without the condition $f_{\pi}(H) \subseteq H$, and that the $\bmod H$ Nielsen theory can share everything with the q-Nielsen theory.

2. Mod H Nielsen number

Let X be a connected finite polyhedron and $f: X \rightarrow X$ a self-map. Let Π be the group of covering transformations for the universal covering

[^0]projection $p: \widetilde{X} \rightarrow X$. In what follows, we will fix a lifting $\tilde{f}: \widetilde{X} \rightarrow \widetilde{X}$ of f on the universal covering. Then we have a homomorphism $\varphi: \Pi \rightarrow \Pi$ defined by
$$
\tilde{f} \circ \alpha=\varphi(\alpha) \circ \tilde{f}, \quad \alpha \in \Pi .
$$

The homomorphism φ is the same as $\tau_{\beta} f_{\pi}$ for some $\beta \in \Pi$ where τ_{β} is a conjugation by β and $f_{\pi}: \pi_{1}(X) \rightarrow \pi_{1}(X)$ is the homomorphism induced by f. Take a normal subgroup H of Π with $f_{\pi}(H) \subseteq H$, so $\varphi(H) \subseteq H$. Let \bar{X} be the quotient space \widetilde{X} / H of the universal covering space \widetilde{X} and $\bar{p}: \bar{X} \rightarrow X$ a regular covering projection concerning to H. Since $\varphi(H) \subseteq H, \tilde{f}$ induces the lifting $\bar{f}: \bar{X} \rightarrow \bar{X}$ so that the following diagram

commutes.
For the lifting \bar{f}, we also have a homomorphism $\bar{\varphi}: \Pi / H \rightarrow \Pi / H$ defined by

$$
\bar{f} \circ \bar{\alpha}=\bar{\varphi}(\bar{\alpha}) \circ \bar{f}, \quad \bar{\alpha} \in \Pi / H
$$

so that the following diagram commutes:

The homomorphism $\bar{\varphi}$ induces the Reidemeister action of Π / H on Π / H as follows:

$$
\Pi / H \times \Pi / H \rightarrow \Pi / H, \quad(\bar{\gamma}, \bar{\alpha}) \mapsto \bar{\gamma} \bar{\alpha} \bar{\varphi}(\bar{\gamma})^{-1} .
$$

Denote the sets of Reidemeister classes of Π / H determined by $\bar{\varphi}$ by $\mathcal{R}[\bar{\varphi}]$. Then the fixed point set $\operatorname{Fix}(f)=\{x \in X \mid f(x)=x\}$ splits into a disjoint union of mod H fixed point classes, that is,

$$
\operatorname{Fix}(f)=\bigcup_{[\bar{\alpha}] \in \mathcal{R}[\bar{\varphi}]} \bar{p}(\operatorname{Fix}(\bar{\alpha} \circ \bar{f})) .
$$

The original mod H Nielsen number $N_{H}(f)$ is the number of mod H fixed point classes with nonzero fixed point index. (see [1] or [3] for the details)

Theorem 2.1 ([3, Theorem 2.2]). Two fixed points x_{0} and x_{1} of f belong to the same mod H fixed point class if and only if there is a path c from x_{0} to x_{1} such that $\left\langle c(f \circ c)^{-1}\right\rangle \in H$.

In [4], Woo and Kim introduced another approach for the $\bmod H$ Nielsen number. Let $q: X \rightarrow Y$ be a map. Two fixed point x_{0} and x_{1} of a map $f: X \rightarrow X$ are said to be in the same q-fixed point class if there is a path c from x_{0} to x_{1} such that

$$
q \circ c \simeq q \circ f \circ c \quad(\text { rel. end points). }
$$

Each q-fixed point class is a union of fixed point classes of f and the q-Nielsen number, denoted by $N_{q}(f)$, is the number of q-fixed point classes with nonzero fixed point index. The q-Nielsen number $N_{q}(f)$ is a homotopy invariant lower bound for $N(f)$ and is a generalization of the original mod H Nielsen number.

Theorem 2.2 ([4, Theorem 1.5]). If there is a map $f_{q}: Y \rightarrow Y$ such that the following diagram

commutes, then $N_{q}(f)=N_{H}(f)$ where $H=\operatorname{ker}\left(q_{\pi}: \pi_{1}(X) \rightarrow \pi_{1}(Y)\right)$.
The definition of q-fixed point class does not use any covering spaces and it works directly on X and Y. So, $N_{q}(f)$ is always defined without any restriction to a map f and it is more convenient in geometric problems.

We now consider the $\bmod H$ fixed point class again. For $\alpha \in \Pi$, let $\bar{\alpha} \in \Pi / H$ be the quotient element of α. The $\bmod H$ fixed point class $\bar{p}(\operatorname{Fix}(\bar{\alpha} \circ \bar{f}))$ splits into a union of fixed point classes as follows:

$$
\bar{p}(\operatorname{Fix}(\bar{\alpha} \circ \bar{f}))=\bigcup_{\alpha^{\prime} \in[\alpha]_{H}} p\left(\operatorname{Fix}\left(\alpha^{\prime} \circ \tilde{f}\right)\right)
$$

where $[\alpha]_{H}$ is the mod H conjugacy class of α which is defined by the equivalent relation $\alpha^{\prime} \sim \alpha$ if $\alpha^{\prime}=h \gamma \alpha \varphi(\gamma)^{-1}$ for some $h \in H$ and $\gamma \in \Pi$. (see [3]) If a map $f: X \rightarrow X$ does not satisfy $f_{\pi}(H) \subseteq H$, there does not exist any lifting of f on the regular covering space, so the $\bmod H$ fixed point class $\bar{p}(\operatorname{Fix}(\bar{\alpha} \circ \bar{f}))$ is not defined. But, there is still no problem to
get the $\bmod H$ conjugacy class $[\alpha]_{H}$ and $p\left(\operatorname{Fix}\left(\alpha^{\prime} \circ \tilde{f}\right)\right)$ for each $\alpha^{\prime} \in[\alpha]_{H}$ without the condition $f_{\pi}(H) \subseteq H$.

Definition 2.3. For a map $f: X \rightarrow X$ and a normal subgroup H of Π, the set

$$
F_{H}(\alpha \circ \tilde{f})=\bigcup_{\alpha^{\prime} \in[\alpha]_{H}} p\left(\operatorname{Fix}\left(\alpha^{\prime} \circ \tilde{f}\right)\right)
$$

is called a mod H fixed point class of f labeled by the $\bmod H$ conjugate class $[\alpha]_{H}$. The mod H Nielsen number $N_{H}(f)$ is the number of $\bmod H$ fixed point classes with nonzero fixed point index.

The algebraic condition $f_{\pi}(H) \subseteq H$ is not necessary in Definition 2.3 and neither is it in the following theorem.

Theorem 2.4. Two fixed points x_{0} and x_{1} of f belong to the same $\bmod H$ fixed point class if and only if there is a path c from x_{0} to x_{1} such that $\left\langle c(f \circ c)^{-1}\right\rangle \in H$.

Proof. Suppose that fixed points x_{0} and x_{1} are in the same mod H fixed point class $F_{H}(\alpha \circ \tilde{f})$. Then we may assume that $x_{0} \in p(\operatorname{Fix}(\alpha \circ$ $\tilde{f}))$ and $x_{1} \in p\left(\operatorname{Fix}\left(h \gamma \alpha \varphi(\gamma)^{-1} \circ \tilde{f}\right)\right)$ for some $h \in H$ and $\gamma \in \Pi$. Choose $\tilde{x}_{0} \in p^{-1}\left(x_{0}\right)$ and $\tilde{x}_{1} \in p^{-1}\left(x_{1}\right)$ such that $(\alpha \circ \tilde{f})\left(\tilde{x}_{0}\right)=\tilde{x}_{0}$ and $\left(h \gamma \alpha \varphi(\gamma)^{-1} \circ \tilde{f}\right)\left(\tilde{x}_{1}\right)=\tilde{x}_{1}$. Take a path \tilde{c} from \tilde{x}_{0} to $\gamma^{-1}\left(\tilde{x}_{1}\right)$. Let $c=p \circ \tilde{c}$, then c is a path from x_{0} to x_{1}. Let $k=\gamma^{-1} h \gamma \in H$. Then

$$
\begin{aligned}
(k \alpha \circ \tilde{f})\left(\gamma^{-1}\left(\tilde{x}_{1}\right)\right) & =\left(\gamma^{-1} h \gamma \alpha \circ \tilde{f} \circ \gamma^{-1}\right)\left(\tilde{x}_{1}\right) \\
& =\left(\gamma^{-1} h \gamma \alpha \varphi(\gamma)^{-1} \circ \tilde{f}\right)\left(\tilde{x}_{1}\right) \\
& =\gamma^{-1}\left(\left(h \gamma \alpha \varphi(\gamma)^{-1} \circ \tilde{f}\right)\left(\tilde{x}_{1}\right)\right) \\
& =\gamma^{-1}\left(\tilde{x}_{1}\right) .
\end{aligned}
$$

Therefore, since \tilde{c} is a path from \tilde{x}_{0} to $\gamma^{-1}\left(\tilde{x}_{1}\right)$, this implies that $k \alpha \circ \tilde{f} \circ \tilde{c}$ is a path from $k\left(\tilde{x}_{0}\right)$ to $\gamma^{-1}\left(\tilde{x}_{1}\right)$, hence $\tilde{c}(k \alpha \circ \tilde{f} \circ \tilde{c})^{-1}$ is a path from \tilde{x}_{0} to $k\left(\tilde{x}_{0}\right)$. Since $\tilde{c}(k \alpha \circ \tilde{f} \circ \tilde{c})^{-1}$ is a lifting of $c(f \circ c)^{-1}$, we can conclude that $\left\langle c(f \circ c)^{-1}\right\rangle=k \in H$.

Conversely, suppose that there is a path c from x_{0} to x_{1} such that $\left\langle c(f \circ c)^{-1}\right\rangle \in H$. Choose $\tilde{x}_{0} \in p^{-1}\left(x_{0}\right)$ and let \tilde{c} be the lifting of c with initial point \tilde{x}_{0}. Let \tilde{x}_{1} be the terminal point of \tilde{c}. Let $\alpha \in \Pi$ be the covering transformation with $(\alpha \circ \tilde{f})\left(\tilde{x}_{1}\right)=\tilde{x}_{1}$. Then $\tilde{c}(\alpha \circ \tilde{f} \circ \tilde{c})^{-1}$ is a lifting of $c(f \circ c)^{-1}$ with initial point \tilde{x}_{0}. Since $\left\langle c(f \circ c)^{-1}\right\rangle \in H$, there exists $h \in H$ such that $h\left(\tilde{x}_{0}\right)$ is the terminal point of the lifting $\tilde{c}(\alpha \circ \tilde{f} \circ \tilde{c})^{-1}$. This implies that $h\left(\tilde{x}_{0}\right)$ is the initial point of the path
$\alpha \circ \tilde{f} \circ \tilde{c}$. Thus we have

$$
\begin{aligned}
\left(h^{-1} \alpha \circ \tilde{f}\right)\left(\tilde{x}_{0}\right) & =h^{-1}\left(\alpha \circ \tilde{f}\left(\tilde{x}_{0}\right)\right) \\
& =h^{-1}\left(h\left(\tilde{x}_{0}\right)\right) \\
& =\tilde{x}_{0} .
\end{aligned}
$$

Therefore, we have $x_{0} \in p\left(\operatorname{Fix}\left(h^{-1} \alpha \circ \tilde{f}\right)\right)$. Since $(\alpha \circ \tilde{f})\left(\tilde{x}_{1}\right)=\tilde{x}_{1}$, we have $x_{1} \in p(\operatorname{Fix}(\alpha \circ \tilde{f}))$. Consequently, x_{0} and x_{1} are in the same mod H fixed point class.

Theorem 2.5. Let $H=\operatorname{ker}\left(q_{\pi}: \pi_{1}(X) \rightarrow \pi_{1}(Y)\right)$. The mod H fixed point classes are the same as the q-fixed point classes.

Proof. Let x_{0} and x_{1} be fixed points of f and c a path from x_{0} to x_{1}. Then

$$
q \circ c \simeq q \circ f \circ c \text { (rel. end points) }
$$

if and only if $q\left(c(f \circ c)^{-1}\right) \simeq e\left(\right.$ rel. base point $\left.q\left(x_{0}\right)\right)$ where

$$
e \text { is the constant loop at } q\left(x_{0}\right)
$$

if and only if $q_{\pi}\left(\left\langle c(f \circ c)^{-1}\right\rangle\right)=\langle e\rangle$
if and only if $\left\langle c(f \circ c)^{-1}\right\rangle \in H$.
By Theorem 2.4, we obtain the desired result.
Corollary 2.6. For a self-map $f: X \rightarrow X$ and a map $q: X \rightarrow Y$, we have

$$
N_{H}(f)=N_{q}(f)
$$

where $H=\operatorname{ker}\left(q_{\pi}\right)$.
Example 2.7. Let X be a torus with three holes. Then the fundamental group $\pi_{1}(X)$ of X is a free group on four generators:

$$
\pi_{1}(X)=\langle a, b, c, d\rangle .
$$

Let $f: X \rightarrow X$ be a map such that

$$
\begin{aligned}
f_{\pi}(a) & =a^{10} b a^{-6} c^{-2} \\
f_{\pi}(b) & =c b d, \\
f_{\pi}(c) & =a d, \\
f_{\pi}(d) & =c^{5} d^{-5} a d^{-1} a^{2} d^{2} .
\end{aligned}
$$

The Lefschetz number $L(f)$ of f is:

$$
L(f)=1-((10-6)+1+0+(-5-1+2))=0,
$$

and it is very hard to calculate the Nielsen number $N(f)$. Thus we do not even know the existence of the fixed point of a map that is
homotopic to f by $L(f)$ and $N(f)$. But, we can easily compute the $\bmod H$ Nielsen number $N_{H}(f)$ for H which is the normal closure of the subgroup $\langle a, b, c\rangle$. Note that $f_{\pi}(H) \nsubseteq H$.

Now, consider a map $q: X \rightarrow S^{1}$ such that $\operatorname{ker}\left(q_{\pi}\right)=H$. Then, it is easy to check that there are at least five q-Nielsen fixed point classes such that exactly five of those classes have nonzero indices, so $N_{H}(f)=$ $N_{q}(f)=5$. Thus, all maps in the homotopy class of f have at least five fixed points.

References

[1] R. Brown, The Lefschetz Fixed Point Theorem, Scott-Foresman, Grenview, IL, 1971.
[2] R. Brown, More about Nielsen theories and their applications, In: Handbook of Topological Fixed Point Theory, Kluwer, 2005, 433-462.
[3] B. Jiang, Lectures on Nielsen fixed point theory, Contemp. Math., vol.14, Amer. Math. Soc., Providence, RI, 1983.
[4] M. Woo and J. Kim, Note on a lower bound of Nielsen number, J. of Korean Math. Soc. 29 (1992), 117-125.
[5] C. You, Fixed point classes of a fiber map, Pacific J. Math. 100 (1982), 217-241.
*
Department of Mathematics
Kyungsung University
Busan 608-736, Republic of Korea
E-mail: kimsw@ks.ac.kr

[^0]: Received March 24, 2009; Revised May 18, 2009; Accepted May 18, 2009.
 2000 Mathematics Subject Classification: Primary 55M20.
 Key words and phrases: fixed point, $\bmod H$ Nielsen number, q-Nielsen number.

