JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **22**, No. 2, June 2009

THE MOD H NIELSEN NUMBER

SEUNG WON KIM*

ABSTRACT. Let $f : X \to X$ be a self-map of a connected finite polyhedron X. In this short note, we say that the mod HNielsen number $N_H(f)$ is well-defined without the algebraic condition $f_{\pi}(H) \subseteq H$ and that $N_H(f)$ is the same as the q-Nielsen number $N_q(f)$ in any case.

1. Introduction

Let $f: X \to X$ be a self-map of a connected finite polyhedron X. The Nielsen number N(f) of f, by its homotopy invariance, provides a lower bound for the minimum number of fixed points over all maps homotopic to f. The mod H Nielsen number $N_H(f)$ is a lower bound for N(f) that might be easier to compute and is essential to study for the fixed point of fiber preserving maps. See [2], [3] or [5] for more details.

In 1992, Woo and Kim [4] introduced the q-Nielsen number $N_q(f)$ that is a generalization of the original mod H Nielsen number $N_H(f)$. The q-Nielsen number has an advantage for geometric questions and is defined without the condition $f_{\pi}(H) \subseteq H$ that is a requirement in the definition of the original mod H Nielsen number.

The purpose of this short note is to say that we can define the mod H Nielsen fixed point class without the condition $f_{\pi}(H) \subseteq H$, which means that $N_H(f)$ is defined without the condition $f_{\pi}(H) \subseteq H$, and that the mod H Nielsen theory can share everything with the q-Nielsen theory.

2. Mod *H* Nielsen number

Let X be a connected finite polyhedron and $f: X \to X$ a self-map. Let Π be the group of covering transformations for the universal covering

Received March 24, 2009; Revised May 18, 2009; Accepted May 18, 2009.

²⁰⁰⁰ Mathematics Subject Classification: Primary 55M20.

Key words and phrases: fixed point, mod H Nielsen number, q-Nielsen number.

Seung Won Kim

projection $p: \widetilde{X} \to X$. In what follows, we will fix a lifting $\tilde{f}: \widetilde{X} \to \widetilde{X}$ of f on the universal covering. Then we have a homomorphism $\varphi: \Pi \to \Pi$ defined by

$$\tilde{f} \circ \alpha = \varphi(\alpha) \circ \tilde{f}, \quad \alpha \in \Pi$$

The homomorphism φ is the same as $\tau_{\beta}f_{\pi}$ for some $\beta \in \Pi$ where τ_{β} is a conjugation by β and $f_{\pi} : \pi_1(X) \to \pi_1(X)$ is the homomorphism induced by f. Take a normal subgroup H of Π with $f_{\pi}(H) \subseteq H$, so $\varphi(H) \subseteq H$. Let \overline{X} be the quotient space \widetilde{X}/H of the universal covering space \widetilde{X} and $\overline{p} : \overline{X} \to X$ a regular covering projection concerning to H. Since $\varphi(H) \subseteq H$, \widetilde{f} induces the lifting $\overline{f} : \overline{X} \to \overline{X}$ so that the following diagram

$$\begin{array}{cccc} \widetilde{X} & \stackrel{\widetilde{f}}{\longrightarrow} & \widetilde{X} \\ \downarrow & & \downarrow \\ \overline{X} & \stackrel{\overline{f}}{\longrightarrow} & \overline{X} \\ \downarrow^{\overline{p}} & & \downarrow^{\overline{p}} \\ X & \stackrel{f}{\longrightarrow} & X \end{array}$$

commutes.

For the lifting \bar{f} , we also have a homomorphism $\bar{\varphi}: \Pi/H \to \Pi/H$ defined by

$$\bar{f} \circ \bar{\alpha} = \bar{\varphi}(\bar{\alpha}) \circ \bar{f}, \quad \bar{\alpha} \in \Pi/H$$

so that the following diagram commutes:

$$\begin{array}{cccc} \Pi & \stackrel{\varphi}{\longrightarrow} & \Pi \\ & & \downarrow \\ & & \downarrow \\ \Pi/H & \stackrel{\bar{\varphi}}{\longrightarrow} & \Pi/H \end{array}$$

The homomorphism $\bar{\varphi}$ induces the *Reidemeister action* of Π/H on Π/H as follows:

$$\Pi/H \times \Pi/H \to \Pi/H, \quad (\bar{\gamma}, \bar{\alpha}) \mapsto \bar{\gamma}\bar{\alpha}\bar{\varphi}(\bar{\gamma})^{-1}.$$

Denote the sets of Reidemeister classes of Π/H determined by $\bar{\varphi}$ by $\mathcal{R}[\bar{\varphi}]$. Then the fixed point set $\operatorname{Fix}(f) = \{x \in X \mid f(x) = x\}$ splits into a disjoint union of *mod* H fixed point classes, that is,

$$\operatorname{Fix}(f) = \bigcup_{[\bar{\alpha}] \in \mathcal{R}[\bar{\varphi}]} \bar{p}(\operatorname{Fix}(\bar{\alpha} \circ \bar{f})).$$

The original mod H Nielsen number $N_H(f)$ is the number of mod H fixed point classes with nonzero fixed point index. (see [1] or [3] for the details)

THEOREM 2.1 ([3, Theorem 2.2]). Two fixed points x_0 and x_1 of f belong to the same mod H fixed point class if and only if there is a path c from x_0 to x_1 such that $\langle c(f \circ c)^{-1} \rangle \in H$.

In [4], Woo and Kim introduced another approach for the mod HNielsen number. Let $q: X \to Y$ be a map. Two fixed point x_0 and x_1 of a map $f: X \to X$ are said to be in the same *q*-fixed point class if there is a path c from x_0 to x_1 such that

$$q \circ c \simeq q \circ f \circ c$$
 (rel. end points).

Each q-fixed point class is a union of fixed point classes of f and the q-Nielsen number, denoted by $N_q(f)$, is the number of q-fixed point classes with nonzero fixed point index. The q-Nielsen number $N_q(f)$ is a homotopy invariant lower bound for N(f) and is a generalization of the original mod H Nielsen number.

THEOREM 2.2 ([4, Theorem 1.5]). If there is a map $f_q: Y \to Y$ such that the following diagram

$$\begin{array}{cccc} X & \stackrel{f}{\longrightarrow} & X \\ & & \downarrow^{q} & & \downarrow^{q} \\ Y & \stackrel{f_{q}}{\longrightarrow} & Y \end{array}$$

commutes, then $N_q(f) = N_H(f)$ where $H = \ker(q_\pi : \pi_1(X) \to \pi_1(Y))$.

The definition of q-fixed point class does not use any covering spaces and it works directly on X and Y. So, $N_q(f)$ is always defined without any restriction to a map f and it is more convenient in geometric problems.

We now consider the mod H fixed point class again. For $\alpha \in \Pi$, let $\bar{\alpha} \in \Pi/H$ be the quotient element of α . The mod H fixed point class $\bar{p}(\operatorname{Fix}(\bar{\alpha} \circ \bar{f}))$ splits into a union of fixed point classes as follows:

$$\bar{p}(\operatorname{Fix}(\bar{\alpha}\circ\bar{f})) = \bigcup_{\alpha'\in[\alpha]_H} p(\operatorname{Fix}(\alpha'\circ\tilde{f}))$$

where $[\alpha]_H$ is the mod H conjugacy class of α which is defined by the equivalent relation $\alpha' \sim \alpha$ if $\alpha' = h\gamma \alpha \varphi(\gamma)^{-1}$ for some $h \in H$ and $\gamma \in \Pi$. (see [3]) If a map $f: X \to X$ does not satisfy $f_{\pi}(H) \subseteq H$, there does not exist any lifting of f on the regular covering space, so the mod H fixed point class $\bar{p}(\operatorname{Fix}(\bar{\alpha} \circ \bar{f}))$ is not defined. But, there is still no problem to get the mod H conjugacy class $[\alpha]_H$ and $p(\operatorname{Fix}(\alpha' \circ \tilde{f}))$ for each $\alpha' \in [\alpha]_H$ without the condition $f_{\pi}(H) \subseteq H$.

DEFINITION 2.3. For a map $f: X \to X$ and a normal subgroup H of Π , the set

$$F_H(\alpha \circ \tilde{f}) = \bigcup_{\alpha' \in [\alpha]_H} p(\operatorname{Fix}(\alpha' \circ \tilde{f}))$$

is called a mod H fixed point class of f labeled by the mod H conjugate class $[\alpha]_H$. The mod H Nielsen number $N_H(f)$ is the number of mod H fixed point classes with nonzero fixed point index.

The algebraic condition $f_{\pi}(H) \subseteq H$ is not necessary in Definition 2.3 and neither is it in the following theorem.

THEOREM 2.4. Two fixed points x_0 and x_1 of f belong to the same mod H fixed point class if and only if there is a path c from x_0 to x_1 such that $\langle c(f \circ c)^{-1} \rangle \in H$.

Proof. Suppose that fixed points x_0 and x_1 are in the same mod Hfixed point class $F_H(\alpha \circ \tilde{f})$. Then we may assume that $x_0 \in p(\text{Fix}(\alpha \circ \tilde{f}))$ and $x_1 \in p(\text{Fix}(h\gamma\alpha\varphi(\gamma)^{-1} \circ \tilde{f}))$ for some $h \in H$ and $\gamma \in \Pi$. Choose $\tilde{x}_0 \in p^{-1}(x_0)$ and $\tilde{x}_1 \in p^{-1}(x_1)$ such that $(\alpha \circ \tilde{f})(\tilde{x}_0) = \tilde{x}_0$ and $(h\gamma\alpha\varphi(\gamma)^{-1} \circ \tilde{f})(\tilde{x}_1) = \tilde{x}_1$. Take a path \tilde{c} from \tilde{x}_0 to $\gamma^{-1}(\tilde{x}_1)$. Let $c = p \circ \tilde{c}$, then c is a path from x_0 to x_1 . Let $k = \gamma^{-1}h\gamma \in H$. Then

$$(k\alpha \circ \tilde{f})(\gamma^{-1}(\tilde{x}_1)) = (\gamma^{-1}h\gamma\alpha \circ \tilde{f} \circ \gamma^{-1})(\tilde{x}_1)$$

= $(\gamma^{-1}h\gamma\alpha\varphi(\gamma)^{-1} \circ \tilde{f})(\tilde{x}_1)$
= $\gamma^{-1}((h\gamma\alpha\varphi(\gamma)^{-1} \circ \tilde{f})(\tilde{x}_1))$
= $\gamma^{-1}(\tilde{x}_1).$

Therefore, since \tilde{c} is a path from \tilde{x}_0 to $\gamma^{-1}(\tilde{x}_1)$, this implies that $k\alpha \circ \tilde{f} \circ \tilde{c}$ is a path from $k(\tilde{x}_0)$ to $\gamma^{-1}(\tilde{x}_1)$, hence $\tilde{c} (k\alpha \circ \tilde{f} \circ \tilde{c})^{-1}$ is a path from \tilde{x}_0 to $k(\tilde{x}_0)$. Since $\tilde{c} (k\alpha \circ \tilde{f} \circ \tilde{c})^{-1}$ is a lifting of $c (f \circ c)^{-1}$, we can conclude that $\langle c (f \circ c)^{-1} \rangle = k \in H$.

Conversely, suppose that there is a path c from x_0 to x_1 such that $\langle c(f \circ c)^{-1} \rangle \in H$. Choose $\tilde{x}_0 \in p^{-1}(x_0)$ and let \tilde{c} be the lifting of c with initial point \tilde{x}_0 . Let \tilde{x}_1 be the terminal point of \tilde{c} . Let $\alpha \in \Pi$ be the covering transformation with $(\alpha \circ \tilde{f})(\tilde{x}_1) = \tilde{x}_1$. Then $\tilde{c}(\alpha \circ \tilde{f} \circ \tilde{c})^{-1}$ is a lifting of $c(f \circ c)^{-1}$ with initial point \tilde{x}_0 . Since $\langle c(f \circ c)^{-1} \rangle \in H$, there exists $h \in H$ such that $h(\tilde{x}_0)$ is the terminal point of the lifting $\tilde{c}(\alpha \circ \tilde{f} \circ \tilde{c})^{-1}$. This implies that $h(\tilde{x}_0)$ is the initial point of the path

 $\alpha \circ \tilde{f} \circ \tilde{c}$. Thus we have

$$(h^{-1}\alpha \circ \tilde{f})(\tilde{x}_0) = h^{-1}(\alpha \circ \tilde{f}(\tilde{x}_0))$$
$$= h^{-1}(h(\tilde{x}_0))$$
$$= \tilde{x}_0.$$

Therefore, we have $x_0 \in p(\operatorname{Fix}(h^{-1}\alpha \circ \tilde{f}))$. Since $(\alpha \circ \tilde{f})(\tilde{x}_1) = \tilde{x}_1$, we have $x_1 \in p(\operatorname{Fix}(\alpha \circ \tilde{f}))$. Consequently, x_0 and x_1 are in the same mod H fixed point class.

THEOREM 2.5. Let $H = \ker(q_{\pi} : \pi_1(X) \to \pi_1(Y))$. The mod H fixed point classes are the same as the q-fixed point classes.

Proof. Let x_0 and x_1 be fixed points of f and c a path from x_0 to x_1 . Then

 $q \circ c \simeq q \circ f \circ c$ (rel. end points)

if and only if $q(c(f \circ c)^{-1}) \simeq e$ (rel. base point $q(x_0)$) where

e is the constant loop at $q(x_0)$

if and only if $q_{\pi}(\langle c(f \circ c)^{-1} \rangle) = \langle e \rangle$

if and only if $\langle c(f \circ c)^{-1} \rangle \in H$.

By Theorem 2.4, we obtain the desired result. \Box COROLLARY 2.6. For a self-map $f: X \to X$ and a map $q: X \to Y$,

COROLLARY 2.6. For a self-map $f: X \to X$ and a map q: X -we have

$$N_H(f) = N_q(f)$$

where $H = \ker(q_{\pi})$.

EXAMPLE 2.7. Let X be a torus with three holes. Then the fundamental group $\pi_1(X)$ of X is a free group on four generators:

$$\pi_1(X) = \langle a, b, c, d \rangle.$$

Let $f: X \to X$ be a map such that

$$f_{\pi}(a) = a^{10}ba^{-6}c^{-2},$$

$$f_{\pi}(b) = cbd,$$

$$f_{\pi}(c) = ad,$$

$$f_{\pi}(d) = c^{5}d^{-5}ad^{-1}a^{2}d^{2}.$$

The Lefschetz number L(f) of f is:

$$L(f) = 1 - ((10 - 6) + 1 + 0 + (-5 - 1 + 2)) = 0,$$

and it is very hard to calculate the Nielsen number N(f). Thus we do not even know the existence of the fixed point of a map that is

Seung Won Kim

homotopic to f by L(f) and N(f). But, we can easily compute the mod H Nielsen number $N_H(f)$ for H which is the normal closure of the subgroup $\langle a, b, c \rangle$. Note that $f_{\pi}(H) \notin H$. Now, consider a map $q: X \to S^1$ such that $\ker(q_{\pi}) = H$. Then, it

Now, consider a map $q: X \to S^1$ such that $\ker(q_\pi) = H$. Then, it is easy to check that there are at least five q-Nielsen fixed point classes such that exactly five of those classes have nonzero indices, so $N_H(f) =$ $N_q(f) = 5$. Thus, all maps in the homotopy class of f have at least five fixed points.

References

- [1] R. Brown, *The Lefschetz Fixed Point Theorem*, Scott-Foresman, Grenview, IL, 1971.
- [2] R. Brown, More about Nielsen theories and their applications, In: Handbook of Topological Fixed Point Theory, Kluwer, 2005, 433–462.
- [3] B. Jiang, Lectures on Nielsen fixed point theory, Contemp. Math., vol.14, Amer. Math. Soc., Providence, RI, 1983.
- [4] M. Woo and J. Kim, Note on a lower bound of Nielsen number, J. of Korean Math. Soc. 29 (1992), 117–125.
- [5] C. You, Fixed point classes of a fiber map, Pacific J. Math. 100 (1982), 217–241.

*

Department of Mathematics Kyungsung University Busan 608-736, Republic of Korea *E-mail*: kimsw@ks.ac.kr