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FUZZY WEAKLY (r, s)-SEMICONTINUOUS MAPPINGS

Jin Tae Kim* and Seok Jong Lee**

Abstract. In this paper, we introduce the concept of fuzzy weakly (r, s)-
semicontinuous mappings on intuitionistic fuzzy topological spaces in Šostak’s
sense. The relations among various kinds of fuzzy mappings on intuitionistic
fuzzy topological spaces in Šostak’s sense are displayed. The characteriza-
tion for the fuzzy weakly (r, s)-semicontinuous mapping is obtained. Also,
we introduce the notion of fuzzy weakly (r, s)-semicontinuous mappings at
a given intuitionistic fuzzy point. The relation between fuzzy weakly (r, s)-
semicontinuous mappings and fuzzy weakly (r, s)-semicontinuous mappings at
an intuitionistic fuzzy point is discussed.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [13]. Chang [3] defined
fuzzy topological spaces. These spaces and its generalizations are later studied
by several authors, one of which, developed by Šostak [12], used the idea of
degree of openness. This type of generalization of fuzzy topological spaces was
later rephrased by Chattopadhyay and his colleagues [4], and by Ramadan [11].

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was
introduced by Atanassov [1]. Recently, Çoker and his colleagues [5, 7] introduced
intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets. Using the
idea of degree of openness and degree of nonopenness, Çoker and Demirci [6]
defined intuitionistic fuzzy topological spaces in Šostak’s sense as a generalization
of smooth topological spaces and intuitionistic fuzzy topological spaces. S. Z. Bai
[2] introduced the concept of fuzzy weakly semicontinuous mappings on Chang’s
fuzzy topological spaces.

In this paper, we introduce the concept of fuzzy weakly (r, s)-semicontinuous
mappings on intuitionistic fuzzy topological spaces in Šostak’s sense. The rela-
tions among various kinds of fuzzy mappings on intuitionistic fuzzy topological
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spaces in Šostak’s sense are displayed. The characterization for the fuzzy weakly
(r, s)-semicontinuous mapping is obtained. Also, we introduce the notion of fuzzy
weakly (r, s)-semicontinuous mappings at a given intuitionistic fuzzy point. The
relation between fuzzy weakly (r, s)-semicontinuous mappings and fuzzy weakly
(r, s)-semicontinuous mappings at an intuitionistic fuzzy point is discussed.

2. Preliminaries

We will denote the unit interval [0, 1] of the real line by I. A member µ of
IX is called a fuzzy set in X. For any µ ∈ IX , µc denotes the complement 1− µ.
By 0̃ and 1̃ we denote constant maps on X with value 0 and 1, respectively. All
other notations are standard notations of fuzzy set theory.

Let X be a nonempty set. An intuitionistic fuzzy set A is an ordered pair

A = (µA, γA)

where the functions µA : X → I and γA : X → I denote the degree of membership
and the degree of nonmembership, respectively and µA+γA ≤ 1. Obviously every
fuzzy set µ in X is an intuitionistic fuzzy set of the form (µ, 1̃− µ).

Definition 2.1. ([1]) Let A = (µA, γA) and B = (µB, γB) be intuitionistic
fuzzy sets in X. Then

(1) A ⊆ B iff µA ≤ µB and γA ≥ γB.
(2) A = B iff A ⊆ B and B ⊆ A.
(3) Ac = (γA, µA).
(4) A ∩B = (µA ∧ µB, γA ∨ γB).
(5) A ∪B = (µA ∨ µB, γA ∧ γB).
(6) 0 = (0̃, 1̃) and 1 = (1̃, 0̃).

Let f be a map from a set X to a set Y . Let A = (µA, γA) be an intuitionistic
fuzzy set in X and B = (µB, γB) an intuitionistic fuzzy set in Y . Then

(1) The image of A under f , denoted by f(A), is an intuitionistic fuzzy set in
Y defined by

f(A) = (f(µA), 1̃− f(1̃− γA)).
(2) The inverse image of B under f , denoted by f−1(B), is an intuitionistic

fuzzy set in X defined by

f−1(B) = (f−1(µB), f−1(γB)).

A smooth fuzzy topology on X is a map T : IX → I which satisfies the following
properties:

(1) T (0̃) = T (1̃) = 1.
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(2) T (µ1 ∧ µ2) ≥ T (µ1) ∧ T (µ2).
(3) T (

∨
µi) ≥

∧
T (µi).

The pair (X, T ) is called a smooth fuzzy topological space.

An intuitionistic fuzzy topology on X is a family T of intuitionistic fuzzy sets
in X which satisfies the following properties:

(1) 0, 1 ∈ T .
(2) If A1, A2 ∈ T , then A1 ∩A2 ∈ T .
(3) If Ai ∈ T for each i, then

⋃
Ai ∈ T .

The pair (X, T ) is called an intuitionistic fuzzy topological space.

Let I(X) be a family of all intuitionistic fuzzy sets in X and let I ⊗ I be the
set of the pair (r, s) such that r, s ∈ I and r + s ≤ 1.

Definition 2.2. ([6]) Let X be a nonempty set. An intuitionistic fuzzy topol-
ogy in Šostak’s sense(SoIFT for short) T = (T1, T2) on X is a map T : I(X) →
I ⊗ I which satisfies the following properties:

(1) T1(0) = T1(1) = 1 and T2(0) = T2(1) = 0.
(2) T1(A ∩B) ≥ T1(A) ∧ T1(B) and T2(A ∩B) ≤ T2(A) ∨ T2(B).
(3) T1(

⋃
Ai) ≥

∧ T1(Ai) and T2(
⋃

Ai) ≤
∨ T2(Ai).

The (X, T ) = (X, T1, T2) is said to be an intuitionistic fuzzy topological space in
Šostak’s sense(SoIFTS for short). Also, we call T1(A) a gradation of openness of
A and T2(A) a gradation of nonopenness of A.

Definition 2.3. ([8]) Let A be an intuitionistic fuzzy set in SoIFTS (X, T1, T2)
and (r, s) ∈ I ⊗ I. Then A is said to be

(1) fuzzy (r, s)-open if T1(A) ≥ r and T2(A) ≤ s,
(2) fuzzy (r, s)-closed if T1(Ac) ≥ r and T2(Ac) ≤ s.

Definition 2.4. ([8]) Let (X, T1, T2) be a SoIFTS. For each (r, s) ∈ I ⊗ I and
for each A ∈ I(X), the fuzzy (r, s)-interior is defined by

int(A, r, s) =
⋃
{B ∈ I(X) | B ⊆ A, B is fuzzy (r, s)-open}

and the fuzzy (r, s)-closure is defined by

cl(A, r, s) =
⋂
{B ∈ I(X) | A ⊆ B, B is fuzzy (r, s)-closed}.

Let (X, T1, T2) be an intuitionistic fuzzy topological space in Šostak’s sense.
Then it is easy to see that for each (r, s) ∈ I ⊗ I, the family T(r,s) defined by

T(r,s) = {A ∈ I(X) | T1(A) ≥ r and T2(A) ≤ s}
is an intuitionistic fuzzy topology on X.
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Let (X, T ) be an intuitionistic fuzzy topological space and (r, s) ∈ I⊗I. Then
the map T (r,s) : I(X) → I ⊗ I defined by

T (r,s)(A) =





(1, 0) if µ = 0, 1,

(r, s) if A ∈ T − {0, 1},
(0, 1) otherwise

becomes an intuitionistic fuzzy topology in Šostak’s sense on X.

Let α, β ∈ [0, 1] with α + β ≤ 1. An intuitionistic fuzzy point x(α,β) in X is
an intuitionistic fuzzy set in X defined by

x(α,β)(y) =

{
(α, β) if y = x,

(0, 1) if y 6= x.

In this case, x is called the support of x(α,β), α the value of x(α,β), and β the
nonvalue of x(α,β). An intuitionistic fuzzy point x(α,β) is said to belong to an
intuitionistic fuzzy set A = (µA, γA) in X, denoted by x(α,β) ∈ A, if µA(x) ≥ α
and γA(x) ≤ β. An intuitionistic fuzzy set A in X is the union of all intuitionistic
fuzzy points which belong to A.

Definition 2.5. ([8, 9]) Let A be an intuitionistic fuzzy set in a SoIFTS
(X, T1, T2) and (r, s) ∈ I ⊗ I. Then A is said to be

(1) fuzzy (r, s)-semiopen if there is a fuzzy (r, s)-open set B in X such that
B ⊆ A ⊆ cl(B, r, s),

(2) fuzzy (r, s)-semiclosed if there is a fuzzy (r, s)-closed set B in X such that
int(B, r, s) ⊆ A ⊆ B,

(3) fuzzy (r, s)-regular open if int(cl(A, r, s), r, s) = A,
(4) fuzzy (r, s)-regular closed if cl(int(A, r, s), r, s) = A.

Theorem 2.6. ([8]) Let A be an intuitionistic fuzzy set in a SoIFTS (X, T1, T2)
and (r, s) ∈ I ⊗ I. Then the following statements are equivalent:

(1) A is a fuzzy (r, s)-semiopen set.
(2) Ac is a fuzzy (r, s)-semiclosed set.
(3) cl(int(A, r, s), r, s) ⊇ A.
(4) int(cl(Ac, r, s), r, s) ⊆ Ac.

Definition 2.7. ([8]) Let (X, T1, T2) be a SoIFTS. For each (r, s) ∈ I ⊗ I and
for each A ∈ I(X), the fuzzy (r, s)-semiinterior is defined by

sint(A, r, s) =
⋃
{B ∈ I(X) | B ⊆ A, B is fuzzy (r, s)-semiopen}

and the fuzzy (r, s)-semiclosure is defined by

scl(A, r, s) =
⋂
{B ∈ I(X) | A ⊆ B, B is fuzzy (r, s)-semiclosed}.
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Obviously, scl(A, r, s) is the smallest fuzzy (r, s)-semiclosed set which contains
A and sint(A, r, s) is the greatest fuzzy (r, s)-semiopen set which is contained in
A. Also, scl(A, r, s) = A for any fuzzy (r, s)-semiclosed set A and sint(A, r, s) = A
for any fuzzy (r, s)-semiopen set A. Moreover, we have

int(A, r, s) ⊆ sint(A, r, s) ⊆ A ⊆ scl(A, r, s) ⊆ cl(A, r, s).

Also, we have the following results:
(1) scl(0, r, s) = 0, scl(1, r, s) = 1.
(2) scl(A, r, s) ⊇ A.
(3) scl(A ∪B, r, s) ⊇ scl(A, r, s) ∪ scl(B, r, s).
(4) scl(scl(A, r, s), r, s) = scl(A, r, s).
(5) sint(0, r, s) = 0, sint(1, r, s) = 1.
(6) sint(A, r, s) ⊆ A.
(7) sint(A ∩B, r, s) ⊆ sint(A, r, s) ∩ sint(B, r, s).
(8) sint(sint(A, r, s), r, s) = sint(A, r, s).

Definition 2.8. ([8]) For an intuitionistic fuzzy set A in a SoIFTS (X, T1, T2)
and (r, s) ∈ I ⊗ I, we have:

(1) scl(A, r, s)c = sint(Ac, r, s).
(2) sint(A, r, s)c = scl(Ac, r, s).

Definition 2.9. ([9, 10]) Let f : (X, T1, T2) → (Y,U1,U2) be a mapping from
a SoIFTS X to a SoIFTS Y and (r, s) ∈ I ⊗ I. Then f is called

(1) a fuzzy (r, s)-continuous mapping if f−1(B) is a fuzzy (r, s)-open set in X
for each fuzzy (r, s)-open set B in Y ,

(2) a fuzzy (r, s)-semicontinuous mapping if f−1(B) is a fuzzy (r, s)-semiopen
set in X for each fuzzy (r, s)-open set B in Y ,

(3) a fuzzy almost (r, s)-continuous mapping if f−1(B) is a fuzzy (r, s)-open
set in X for each fuzzy (r, s)-regular open set B in Y ,

(4) a fuzzy weakly (r, s)-continuous mapping if for every fuzzy (r, s)-open set
B in Y , f−1(B) ⊆ int(f−1(cl(B, r, s)), r, s),

(5) a fuzzy (r, s)-irresolute mapping if f−1(B) is a fuzzy (r, s)-semiopen set in
X for each fuzzy (r, s)-semiopen set B in Y .

Theorem 2.10. ([9]) Let f : (X, T1, T2) → (Y,U1,U2) be a mapping from a
SoIFTS X to a SoIFTS Y and (r, s) ∈ I ⊗ I. Then the following statements are
equivalent:

(1) f is a fuzzy almost (r, s)-continuous mapping.
(2) f−1(B) ⊆ int(f−1(int(cl(B, r, s), r, s)), r, s) for each fuzzy (r, s)-open set

B in Y .
(3) cl(f−1(cl(int(B, r, s), r, s)), r, s) ⊆ f−1(B) for each fuzzy (r, s)-closed set

B in Y .
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3. Fuzzy weakly (r, s)-semicontinuous mappings

Now, we introduce the notion of fuzzy weakly (r, s)-semicontinuous mappings
on intuitionistic fuzzy topological spaces in Šostak’s sense, and then we investigate
some of their properties.

Theorem 3.1. Let f : (X, T1, T2) → (Y,U1,U2) be a mapping from a SoIFTS
X to a SoIFTS Y and (r, s) ∈ I ⊗ I. If f is fuzzy almost (r, s)-continuous, then
f is a fuzzy weakly (r, s)-continuous mapping.

Proof. Let B be a fuzzy (r, s)-open set in Y . By Theorem 2.10, we have

f−1(B) ⊆ int(f−1(int(cl(B, r, s), r, s)), r, s)
= int(f−1(int(cl(cl(B, r, s), r, s), r, s)), r, s).

Since cl(B, r, s) is a fuzzy (r, s)-semiclosed set in Y , by Theorem 2.6, we have

f−1(B) ⊆ int(f−1(int(cl(cl(B, r, s), r, s), r, s)), r, s)
⊆ int(f−1(cl(B, r, s)), r, s).

Hence f is a fuzzy weakly (r, s)-continuous mapping.

The converse of Theorem 3.1 need not be true(see [9]).

Definition 3.2. Let f : (X, T1, T2) → (Y,U1,U2) be a mapping from a SoIFTS
X to a SoIFTS Y and (r, s) ∈ I ⊗ I. Then f is said to be fuzzy weakly (r, s)-
semicontinuous if f−1(B) ⊆ sint(f−1(scl(B, r, s)), r, s) for each fuzzy (r, s)-open
set B in Y .

Definition 3.3. Let f : (X, T1, T2) → (Y,U1,U2) be a mapping from a SoIFTS
X to a SoIFTS Y and (r, s) ∈ I ⊗ I. Then f is said to be fuzzy weakly (r, s)-
semicontinuous at an intuitionistic fuzzy point x(α,β) in X if for each fuzzy (r, s)-
open set B in Y such that f(x(α,β)) ∈ B, there is a fuzzy (r, s)-semiopen set A
in X such that x(α,β) ∈ A and f(A) ⊆ scl(B, r, s).

Remark 3.4. It is clear that a fuzzy (r, s)-semicontinuous mapping is a fuzzy
weakly (r, s)-semicontinuous mapping for each (r, s) ∈ I ⊗ I. The following
example shows that the converse need not be true for each (r, s) ∈ I ⊗ I.

Example 3.5. Let X = {x, y, z} and let A1 and A2 be intuitionistic fuzzy sets
in X defined as

A1(x) = (0.3, 0.6), A1(y) = (0.3, 0.6), A1(z) = (0.3, 0.3);

and
A2(x) = (0.4, 0.4), A2(y) = (0.4, 0.4), A2(z) = (0.3, 0.3).
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Define T : I(X) → I ⊗ I and U : I(X) → I ⊗ I by

T (A) = (T1(A), T2(A)) =





(1, 0) if A = 0, 1,

(1
2 , 1

3) if A = A2,

(0, 1) otherwise;

and

U(A) = (U1(A),U2(A)) =





(1, 0) if A = 0, 1,

(1
2 , 1

3) if A = A1, A2,

(0, 1) otherwise.
Then clearly T and U are SoIFTs on X. Consider a mapping f : (X, T ) → (X,U)
defined by f(x) = x, f(y) = y and f(z) = z. Note that

f−1(0) = 0 ⊆ sint(f−1(scl(0,
1
2
,
1
3
)),

1
2
,
1
3
) = 0,

f−1(1) = 1 ⊆ sint(f−1(scl(1,
1
2
,
1
3
)),

1
2
,
1
3
) = 1,

f−1(A1) = A1 ⊆ sint(f−1(scl(A1,
1
2
,
1
3
)),

1
2
,
1
3
) = A2,

and
f−1(A2) = A2 ⊆ sint(f−1(scl(A2,

1
2
,
1
3
)),

1
2
,
1
3
) = A2.

Hence f is fuzzy weakly (1
2 , 1

3)-semicontinuous mapping. But f is not a fuzzy
(1
2 , 1

3)-semicontinuous mapping, because f−1(A1) = A1 is not a fuzzy (1
2 , 1

3)-
semiopen set in (X, T ).

Theorem 3.6. Let f : (X, T1, T2) → (Y,U1,U2) be a mapping from a SoIFTS
X to a SoIFTS Y and (r, s) ∈ I ⊗ I. If f is fuzzy almost (r, s)-continuous, then
f is a fuzzy weakly (r, s)-semicontinuous mapping.

Proof. Let B be a fuzzy (r, s)-open set in Y . Then by Theorem 2.10, we have

f−1(B) ⊆ int(f−1(int(cl(B, r, s), r, s)), r, s)
⊆ sint(f−1(int(cl(B, r, s), r, s)), r, s)
⊆ sint(f−1(int(cl(scl(B, r, s), r, s), r, s)), r, s).

Since scl(B, r, s) is a fuzzy (r, s)-semiclosed set in Y , by Theorem 2.6,

f−1(B) ⊆ sint(f−1(int(cl(scl(B, r, s), r, s), r, s)), r, s)
⊆ sint(f−1(scl(B, r, s)), r, s).

Thus f is a fuzzy weakly (r, s)-semicontinuous mapping.

The following example shows that the converse of Theorem 3.6 need not be
true.
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Example 3.7. Let X = {x, y, z} and let A1 and A2 be intuitionistic fuzzy sets
in X defined as

A1(x) = (0.1, 0.3), A1(y) = (0.2, 0.7), A1(z) = (0.1, 0.5);

and
A2(x) = (0.1, 0.3), A2(y) = (0.3, 0.7), A2(z) = (0.1, 0.5).

Define T : I(X) → I ⊗ I and U : I(X) → I ⊗ I by

T (A) = (T1(A), T2(A)) =





(1, 0) if A = 0, 1,

(1
2 , 1

3) if A = A1,

(0, 1) otherwise;

and

U(A) = (U1(A),U2(A)) =





(1, 0) if A = 0, 1,

(1
2 , 1

3) if A = A2,

(0, 1) otherwise.

Then clearly T and U are SoIFTs on X. Consider a mapping f : (X, T ) → (X,U)
defined by f(x) = x, f(y) = y and f(z) = z. It is easy to see that f−1(0) = 0,
f−1(1) = 1, and f−1(A2) = A2. Since 0, 1, and A2 are fuzzy (1

2 , 1
3)-semiopen sets

in (X, T ), f is a fuzzy (1
2 , 1

3)-semicontinuous mapping. Thus f is a fuzzy weakly
(1
2 , 1

3)-semicontinuous mapping. Since int(cl(A2,
1
2 , 1

3), 1
2 , 1

3) = A2, A2 is a fuzzy
(1
2 , 1

3)-regular open set in (X,U). But f is not a fuzzy almost (1
2 , 1

3)-continuous
mapping, because f−1(A2) = A2 is not a fuzzy (1

2 , 1
3)-open set in (X, T ).

The following examples show that a fuzzy weakly (r, s)-semicontinuous map-
ping need not be fuzzy weakly (r, s)-continuous, and vice versa for each (r, s) ∈
I ⊗ I.

Example 3.8. Let X = {x, y, z} and let A1, A2 and A3 be intuitionistic fuzzy
sets in X defined as

A1(x) = (0.1, 0.7), A1(y) = (0.1, 0.8), A1(z) = (0, 1);

A2(x) = (0.2, 0.5), A2(y) = (0.3, 0.6), A2(z) = (0.3, 0.6);
and

A3(x) = (0.4, 0.4), A3(y) = (0.4, 0.4), A3(z) = (0.3, 0.3).
Define T : I(X) → I ⊗ I and U : I(X) → I ⊗ I by

T (A) = (T1(A), T2(A)) =





(1, 0) if A = 0, 1,

(1
2 , 1

3) if A = A1,

(0, 1) otherwise;
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and

U(A) = (U1(A),U2(A)) =





(1, 0) if A = 0, 1,

(1
2 , 1

3) if A = A2, A3,

(0, 1) otherwise.
Then clearly T and U are SoIFTs on X. Consider a mapping f : (X, T ) → (X,U)
defined by f(x) = x, f(y) = y and f(z) = z. Note that

f−1(0) = 0 ⊆ sint(f−1(scl(0,
1
2
,
1
3
)),

1
2
,
1
3
) = 0,

f−1(1) = 1 ⊆ sint(f−1(scl(1,
1
2
,
1
3
)),

1
2
,
1
3
) = 1,

f−1(A2) = A2 ⊆ sint(f−1(scl(A2,
1
2
,
1
3
)),

1
2
,
1
3
) = A3,

and
f−1(A3) = A3 ⊆ sint(f−1(scl(A3,

1
2
,
1
3
)),

1
2
,
1
3
) = A3.

Thus f is a fuzzy weakly (1
2 , 1

3)-semicontinuous mapping. But f is not a fuzzy
weakly (1

2 , 1
3)-continuous mapping, because

f−1(A2) = A2 * int(f−1(cl(A2,
1
2
,
1
3
)),

1
2
,
1
3
) = A1.

Example 3.9. Let X = {x, y, z} and let A1 and A2 be intuitionistic fuzzy sets
in X defined as

A1(x) = (0.6, 0.3), A1(y) = (0.2, 0.5), A1(z) = (0.4, 0.4);

and
A2(x) = (0.2, 0.7), A2(y) = (0.2, 0.7), A2(z) = (0.3, 0.6).

Define T : I(X) → I ⊗ I and U : I(X) → I ⊗ I by

T (A) = (T1(A), T2(A)) =





(1, 0) if A = 0, 1,

(1
2 , 1

3) if A = A1,

(0, 1) otherwise;

and

U(A) = (U1(A),U2(A)) =





(1, 0) if A = 0, 1,

(1
2 , 1

3) if A = A2,

(0, 1) otherwise.
Then clearly T and U are SoIFTs on X. Consider a mapping f : (X, T ) → (X,U)
defined by f(x) = x, f(y) = y and f(z) = z. Note that

f−1(0) = 0 ⊆ int(f−1(cl(0,
1
2
,
1
3
)),

1
2
,
1
3
) = 0,
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f−1(1) = 1 ⊆ int(f−1(cl(1,
1
2
,
1
3
)),

1
2
,
1
3
) = 1,

and

f−1(A2) = A2 ⊆ int(f−1(cl(A2,
1
2
,
1
3
)),

1
2
,
1
3
) = A1,

Thus f is a fuzzy weakly (1
2 , 1

3)-continuous mapping. But f is not a fuzzy weakly
(1
2 , 1

3)-semicontinuous mapping, because

f−1(A2) = A2 * sint(f−1(scl(A2,
1
2
,
1
3
)),

1
2
,
1
3
) = 0.

From the above two examples, we have the following result.

Theorem 3.10. Fuzzy weakly (r, s)-semicontinuous mapping and fuzzy weakly
(r, s)-continuous mapping are independent notions.

Remark 3.11. Using above definitions, theorems, and results of [9], we give
the following implication diagram to indicate the relations among the different
notions of fuzzy (r, s)-continuous((r, s)-C), fuzzy (r, s)-irresolute((r, s)-I), fuzzy
(r, s)-semicontinuous((r, s)-SC), fuzzy almost (r, s)-continuous((r, s)-AC), fuzzy
weakly (r, s)-continuous((r, s)-WC), and fuzzy weakly (r, s)-semicontinuous((r, s)-
WSC) mapping. None of the undrawn implicaions holds.

(r, s)-I (r, s)-C

? ´
´

´
´

´
´

+ ?

(r, s)-SC (r, s)-AC

? ´
´

´
´

´
´

+ ?

(r, s)-WSC (r, s)-WC

Theorem 3.12. Let f : (X, T1, T2) → (Y,U1,U2) be a mapping from a SoIFTS
X to a SoIFTS Y and (r, s) ∈ I⊗I. Then the following statements are equivalent:

(1) f is a fuzzy weakly (r, s)-semicontinuous mapping.
(2) scl(f−1(sint(B, r, s)), r, s) ⊆ f−1(B) for each fuzzy (r, s)-closed set B in

Y .
(3) f−1(int(B, r, s)) ⊆ sint(f−1(scl(B, r, s)), r, s) for each intuitionistic fuzzy

set B in Y .
(4) scl(f−1(sint(B, r, s)), r, s) ⊆ f−1(cl(B, r, s)) for each intuitionistic fuzzy

set B in Y .
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Proof. (1) ⇒ (2) Let f be a fuzzy weakly (r, s)-semicontinuous mapping and
B a fuzzy (r, s)-closed set in Y . Since Bc is a fuzzy (r, s)-open set in Y ,

(f−1(B))c = f−1(Bc) ⊆ sint(f−1(scl(Bc, r, s)), r, s)
= scl(f−1(sint(B, r, s)), r, s)c.

Thus we have scl(f−1(sint(B, r, s)), r, s) ⊆ f−1(B).

(2)⇒ (1) Let B be a fuzzy (r, s)-open set in Y . Then Bc is a fuzzy (r, s)-closed
set in Y . By (2),

(f−1(B))c = f−1(Bc) ⊇ scl(f−1(sint(Bc, r, s)), r, s)
= sint(f−1(scl(B, r, s)), r, s)c.

Thus we have f−1(B) ⊆ sint(f−1(scl(B, r, s)), r, s). Hence f is a fuzzy weakly
(r, s)-semicontinuous mapping.

(1) ⇒ (3) Let B be an intuitionistic fuzzy set in Y . Then int(B, r, s) is a fuzzy
(r, s)-open set in Y . Since f is a fuzzy weakly (r, s)-continuous mapping,

f−1(int(B, r, s)) ⊆ sint(f−1(scl(int(B, r, s), r, s)), r, s)
⊆ sint(f−1(scl(B, r, s)), r, s).

(3) ⇒ (1) It is obvious.

(2) ⇒ (4) Let B be an intuitionistic fuzzy set in Y . Then cl(B, r, s) is a fuzzy
(r, s)-closed set in Y . By (2),

scl(f−1(sint(B, r, s)), r, s) ⊆ scl(f−1(sint(cl(B, r, s), r, s)), r, s)
⊆ f−1(cl(B, r, s)).

(4) ⇒ (2) It is obvious.

Theorem 3.13. Let f : (X, T1, T2) → (Y,U1,U2) be a mapping from a SoIFTS
X to a SoIFTS Y and (r, s) ∈ I⊗I. Then f is a fuzzy weakly (r, s)-semicontinuous
mapping if and only if f is fuzzy weakly (r, s)-semicontinuous for each intuition-
istic fuzzy point x(α,β) in X.

Proof. Let f be a fuzzy weakly (r, s)-semicontinuous mapping, x(α,β) an in-
tuitionistic fuzzy point in X, and B a fuzzy (r, s)-open set in Y such that
f(x(α,β)) ∈ B. Then x(α,β) ∈ f−1(B) ⊆ sint(f−1(scl(B, r, s)), r, s). Let A =
sint(f−1(scl(B, r, s)), r, s). Then A is a fuzzy (r, s)-semiopen set in X and

f(A) = f(sint(f−1(scl(B, r, s)), r, s))
⊆ f(f−1(scl(B, r, s))) ⊆ scl(B, r, s).
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Hence f is fuzzy weakly (r, s)-semicontinuous at x(α,β). Therefore f is fuzzy
weakly (r, s)-semicontinuous for each intuitionistic fuzzy point in X, because
x(α,β) is an arbitrary intuitionistic fuzzy point in X.
Conversely, let B be a fuzzy (r, s)-open set in Y and x(α,β) an intuitionistic
fuzzy point such that x(α,β) ∈ f−1(B). Then f(x(α,β)) ∈ B. By hypothesis,
there is a fuzzy (r, s)-semiopen set Ax(α,β)

in X such that x(α,β) ∈ Ax(α,β)
and

f(Ax(α,β)
) ⊆ scl(B, r, s). Thus

x(α,β) ∈ Ax(α,β)
⊆ f−1(f(Ax(α,β)

)) ⊆ f−1(scl(B, r, s)).

So,

x(α,β) ∈ Ax(α,β)
= sint(Ax(α,β)

, r, s)

⊆ sint(f−1(scl(B, r, s)), r, s).

Hence

f−1(B) =
⋃
{x(α,β) | x(α,β) ∈ f−1(B)}

⊆
⋃
{Ax(α,β)

| x(α,β) ∈ f−1(B)}
⊆ sint(f−1(scl(B, r, s)), r, s).

Therefore f is a fuzzy weakly (r, s)-semicontinuous mapping.
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