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AN IMPROVED LOWER BOUNDS OF UNIVARIATE
BONFERRONI-TYPE INEQUALITY

Min-Young Lee* and Moon-Shik Jo**

Abstract. Let A1, A2, · · · , An be a sequence of events on a given
probability space. Let mn be the number of those Ai’s which occur.
We establish an improved lower bounds of Univariate Bonferroni-
Type inequality by using the linearity of binomial moments S1, S2,
S3, S4 and S5.

1. Introduction

Let A1, A2, · · · , An be a sequence of events on a given probability
space, and let mn be the number of those Ai’s which occur. Put S0 =
S0,n and

(1.1) Sk = Sk,n =
∑

P (Ai1 ∩Ai2 ∩ · · · ∩Aik), 1 ≤ k ≤ n,

where the summation is over all subscripts satisfying 1 ≤ i1 < i2 < · · · <
ik ≤ n.

For convenience in some formulae we adopt the convention Sk,n = 0 if
k > n. For the formulation of the method we introduce some notations.
I(A) will denote the indicator variable of event A, that is, I(A) = 1 or
0 according as occurs or fails to occur, respectively. For the basic events
Aj we put Ij = I(A) and mn = I1 + I2 + · · ·+ In.

Note that (1.1) becomes Sk =
∑

P (Ii1 = Ii2 = · · · = Iik = 1), k ≥ 1,
where the summation is over all subscripts satisfying 1 ≤ i1 < i2 < · · · <
ik ≤ n. Note that we can rewrite Sk by means of expectation. Since
Ii1Ii2 · · · Iik = 1 if Ii1 = Ii2 = · · · = Iik = 1 or 0 otherwise, we also
get that Sk = E[

∑
Ii1Ii2 · · · Iik ], where the summation is as before. By
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turning to indicator variables we immediately finds that

(1.2) Sk = E

[(
mn

k

)]
, 0 ≤ k ≤ n.

For Bonferroni-type inequalities we require that they be valid for an
arbitrary choice of the events on an arbitrary probability space. The
best known such inequalities are the method of inclusion and exclusion

(1.3)
2j+1∑
k=0

(−1)kSk ≤ P (mn = 0) ≤
2j∑

k=0

(−1)kSk,

where j ≥ 0 is an arbitrary integer.
There is an interest in improved Bonferroni-type inequalities due to

a number of interesting statistical applications. For instance, since 1 −
P (mn = 0) = P (mn ≥ 1), (1.3) in its simplest form becomes S1,n −
S2,n ≤ P (mn ≥ 1) ≤ S1,n which is the most frequently applied form in
statistics in determining confidence intervals.

Galambos and Xu([1]) has proved that

(1.4)
2

t + 1
S1 −

2
t(t + 1)

S2 ≤ P (mn ≥ 1)

where t ≥ 1 is an arbitrary integer. That is the uniformly best lower
bound in the terms of S1 and S2.

Margolin and Maurer([3]) has proved that

(1.5) S1,n − S2,n + maxr

∑
(i6=j 6=r,i<j)

P (Ai ∩Aj ∩Ar) ≤ P (mn ≥ 1)

where r is fixed integer such that 1 ≤ r ≤ n.
Galambos and Xu([1]) has proved that

(1.6) S1 −
t2 − t + 1(

t+1
2

) S2 +
3(2t− 3)(

t+1
2

) S3 −
12(
t+1
2

)S4 ≤ P (mn ≥ 1)

where only relatively large values of t are of interest.
Seneta([4]) has proved that

n∑
i=1

P (Ai)−
n∑

i=2

i−1∑
s=1

P (AiAs) +
n∑

i=3

i−1∑
s=2

max1≤j≤s−1P (AiAsAj)

≤ P (∪n
i=1Ai).

(1.7)

In this direction, we obtain the inequalities of the theorems that follow
using the binomial moments S1, S2, S3, S4 and S5.
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2. Main result

The lower bounds are improved by the following result.

Theorem 2.1. For positive integers n ≥ 5,

(2.1)
P (mn ≥ 1) ≥ S1 −

n2 − 4n + 6(
n
2

) S2 +
3n2 − 18n + 28(

n
3

) S3

− (n− 3)(3n− 11)(
n
4

) S4 +
(n− 3)(n− 4)(

n
5

) S5.

Proof. Let A1, A2, · · · , An be a sequence of events on a given prob-
ability space, and let x = mn be the number of those Aj ’s which occur.
By the binomial moments of (1.2), the right hand side of (2.1) becomes

(2.2)

(
x

1

)
−n2 − 4n + 6(

n
2

) (
x

2

)
+

3n2 − 18n + 28(
n
3

) (
x

3

)
− (n− 3)(3n− 11)(

n
4

) (
x

4

)
+

(n− 3)(n− 4)(
n
5

) (
x

5

)
.

We thus have to prove that

(2.3)
f(x) =

(
x

1

)
− n2 − 4n + 6(

n
2

) (
x

2

)
+

3n2 − 18n + 28(
n
3

) (
x

3

)
− (n− 3)(3n− 11)(

n
4

) (
x

4

)
+

(n− 3)(n− 4)(
n
5

) (
x

5

)
≤ 1

if x ≥ 1 and (2.2) is less than zero or equal to zero if x = 0. The
latter case is evident, having zero on both sides. Also, if x = 1, both
sides of (2.3) equal 1 and if x = 2, the right hand side of (2.3) is
2 − n2−4n+6

(n
2)

= 6(n−2)
n(n−1) ≤ 1 for n ≥ 2. If x = 3, we have to show that

3 − 3n2−12n+18

(n
2)

+ 3n2−18n+28

(n
3)

≤ 1. Multiplying n(n − 1)(n − 2) on both

sides and simplifying, we get g(n) = 5n3 − 24n2 + 94n− 120 ≥ 0. Since
g(n) is an increasing function and g(3) = 81 > 0, g(n) is greater than
zero for n ≥ 3. If x = 4, we have to show that

(2.4) 4− 6n2 − 24n + 36(
n
2

) +
12n2 − 72n + 112(

n
3

) − (n− 3)(3n− 11)(
n
4

) ≤ 1.

Multiplying n(n − 1)(n − 2) on both sides of (2.4) and simplifying, we
get k(n) = (n− 3)(n− 4)(n− 5)(n− 6) ≥ 0. Hence k(n) is greater than
zero or equal to zero for positive integers n ≥ 4. Thus, for the sequel we
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may assume x ≥ 5. Let h(x) = f(x) − 1. Then we have to show that
for any integers x ≥ 5,
(2.5)

h(x) =
(

x

1

)
− n2 − 4n + 6(

n
2

) (
x

2

)
+

3n2 − 18n + 28(
n
3

) (
x

3

)
− (n− 3)(3n− 11)(

n
4

) (
x

4

)
+

(n− 3)(n− 4)(
n
5

) (
x

5

)
− 1 ≤ 0.

Multiplying n(n−1)(n−2) on both sides of (2.5) and simplifying, we
have l(x) = (x− 1)2(x− (n− 2))(x− (n− 1))(x− n) ≤ 0. Note that for
integers x with 5 ≤ x ≤ n, l(x) obtains its maximum value 0 at x = 1,
n− 2, n− 1, n. Hence h(x) is less than zero or equal to zero for positive
integers x ≥ 5. This completes the proof.

3. Numerical example

In 1988, Seneta([4]) Consider a numerical example of 4 event A1 = fail
mathematics, A2 = fail Physics, A3 = fail Chemistry, A4 = fail Biology
with the same data set of University of Sydney examinations for Science
students as in Recsei and Seneta(1987) used. Here we extend extend
Seneta’s example to the case of n = 5 by adding one more event A5 =
fail Economics. Details of the data are presented below:

P (A1) = 0.14, P (A2) = 0.26, P (A3) = 0.33, P (A4) = 0.21, P (A5) =
0.24, P (A1A2) = 0.12, P (A1A3) = 0.12, P (A1A4) = 0.07, P (A2A3) =
0.20, P (A2A4) = 0.12, P (A3A4) = 0.16, P (AiA5) = 0.07, P (A1A2A3) =
0.11, P (A1A2A4) = 0.06, P (A1A3A4) = 0.06, P (A2A3A4) = 0.11,
P (AiAjA5) = 0.065, P (A1A2A3A4) = 0.06, P (AiAjAkA5) = 0.045,
P (A1A2A3A4A5) = 0.03, where i, j, k are integers such that 1 ≤ i <
j < k < 5.

We find that S1,5 = 1.18, S2,5 = 1.07, S3,5 = 0.73, S4,5 = 0.24. Then
(2.1) gives 0.628 ≤ P (mn ≥ 1).

Inequality Value Note
(1.4) 0.43 t=2
(1.5) 0.585
(1.6) 0.596 t=4
(1.7) 0.585
(2.1) 0.628
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In the above table, we see that (2.1) is the best lower bound of
Bonferroni-type inequality.
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