JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **22**, No. 2, June 2009

SEMI-HOMOMORPHISMS OF BCK-ALGEBRAS

Kyoung Ja Lee* and Young Bae Jun**

ABSTRACT. As a generalization of a homomorphism of BCK-algebras, the notion of a semi-homomorphism of BCK-algebras is introduced, and its characterization is given. A condition for a semi-homomorphism to be a homomorphism is provided.

1. Introduction

BCK-algebras entered into mathematics in 1966 through the work of Imai and Iséki [1], and have been applied to many branches of mathematics, such as group theory, functional analysis, probability theory and topology. Such algebras generalize Boolean rings as well as Boolean D-posets (= MV-algebras). The notion of homomorphisms of BCKalgebras play an important role in studying BCK-algebras and related algebraic structures. As a generalization of a homomorphism of BCKalgebras, we introduce the notion of a semi-homomorphism of BCKalgebras, and give its characterization. We provide a condition for a semi-homomorphism to be a homomorphism.

2. Preliminaries

We first display basic concepts on BCK-algebras. By a *BCK-algebra* we mean an algebra (X; *, 0) of type (2, 0) satisfying the axioms:

(a1) $(\forall x, y, z \in X)$ (((x * y) * (x * z)) * (z * y) = 0),

(a2) $(\forall x, y \in X) ((x * (x * y)) * y = 0),$

(a3) $(\forall x \in X) (x * x = 0, 0 * x = 0),$

(a4) $(\forall x, y \in X)$ $(x * y = 0, y * x = 0 \Rightarrow x = y).$

Received September 12, 2008; Accepted November 20, 2008.

²⁰⁰⁰ Mathematics Subject Classification: Primary 06F35, 06A06; Secondary 03G25.

Key words and phrases: (irreducible) ideal, order system, semi-homomorphism. Correspondence should be addressed to Kyoung Ja Lee, kjlee@hnu.kr. This paper has been supported by the 2009 Hannam University Fund.

We can define a partial ordering \leq by $x \leq y$ if and only if x * y = 0. A BCK-algebra X is said to be *bounded* if there exists the bound 1 such that $x \leq 1$ for all $x \in X$.

In any BCK-algebra X, the following hold:

- (b1) $(\forall x \in X) (x * 0 = x),$
- (b2) $(\forall x, y, z \in X) ((x * y) * z = (x * z) * y),$
- (b3) $(\forall x, y, z \in X) ((x * z) * (y * z) \le x * y),$
- (b4) $(\forall x, y, z \in X) (x \le y \Rightarrow x * z \le y * z, z * y \le z * x).$

A mapping $f : X \to Y$ of BCK-algebras is called a *homomorphism* if f(x * y) = f(x) * f(y) for all $x, y \in X$. Note that if $f : X \to Y$ is a homomorphism of BCK-algebras, then f(0) = 0.

A subset A of a BCK-algebra X is called an *ideal* of X if it satisfies: (c1) $0 \in A$,

(c2) $(\forall x \in A) \ (\forall y \in X) \ (y * x \in A \Rightarrow y \in A).$

Note that every ideal A of a BCK-algebra X satisfies:

(2.1)
$$(\forall x \in A) (\forall y \in X) (y \le x \Rightarrow y \in A).$$

The set of all ideals of a BCK-algebra X is denoted by Id(X). It is known that Id(X) is an infinitely distributive lattice (see [7]).

If A is a nonempty subset of a BCK-algebra X, then the ideal of X generated by A, in symbol $\langle A \rangle$, is the set (see [2, Theorem 3])

(2.2)
$$\langle A \rangle = \left\{ x \in X \middle| \begin{array}{c} (\cdots ((x * a_0) * a_1) * \cdots) * a_n = 0 \\ \text{for some } a_0, a_1, \cdots, a_n \in A \end{array} \right\}$$

If $A = \{a\}$, then we denote $\langle \{a\} \rangle$ by $\langle a \rangle$ and call it as the ideal of X generated by a.

DEFINITION 2.1. ([3]) An ideal A of a BCK-algebra X is said to be *irreducible* if it satisfies:

$$(2.3) \qquad (\forall B, C \in Id(X)) \ (A = B \cap C \Rightarrow A = B \text{ or } A = C).$$

Denote by IId(X) the set of all irreducible ideals of X.

DEFINITION 2.2. ([5]) A subset I of a BCK-algebra X is called an *order system* of X if it satisfies:

(c3) I is an upper set, that is, I satisfies:

 $(\forall x \in X) \, (\forall y \in I) \, (y \le x \Rightarrow x \in I),$

(c4) $(\forall x, y \in I) \ (\exists z \in I) \ (z \le x, z \le y).$

Denote by Os(X) the set of all order systems of X.

3. Semi-homomorphisms

DEFINITION 3.1. A mapping $f: X \to Y$ of BCK-algebras is called a *semi-homomorphism* if it satisfies:

(d1) f(0) = 0, (d2) $(\forall x, y \in X) (f(x) * f(y) \le f(x * y))$.

Note that every homomorphism of BCK-algebras is also a semi-homomorphism, but the converse is not true in general as seen in the following examples.

EXAMPLE 3.2. Let $X = \{0, a, b, c, d\}$ be a BCK-algebra with the following Cayley table:

*	0	$egin{array}{c} a \\ 0 \\ a \\ a \\ a \end{array}$	b	c	d
0	0	0	0	0	0
a	a	0	0	0	0
b	b	a	0	0	0
c	c	a	a	0	0
d	d	a	a	a	0

Define a mapping $f: X \to X$ by f(0) = 0, f(a) = b, f(b) = c, f(c) = d and f(d) = d. Then f is a semi-homomorphism, but f is not a homomorphism since $f(c * a) = b \neq a = f(c) * f(a)$.

EXAMPLE 3.3. Let $X_1 = X_2 = \{0, a, b, c\}$ be BCK-algebras with the following Cayley tables respectively:

*1	0	a	b	c	*2	0	a	b	c
0	0	0	0	0	0	0	0	0	0
a	a	0	a	a	a	a	0	0	0
b	b	$\begin{array}{c} 0 \\ b \end{array}$	0	b	b	b	a	0	0
c	c	c	c	0			a		

Define a mapping $f : X_1 \to X_2$ by f(0) = 0, f(a) = a, f(b) = c and f(c) = b. Then f is a semi-homomorphism, but f is not a homomorphism since $f(a *_1 b) = a \neq 0 = f(a) *_2 f(b)$.

DEFINITION 3.4. ([6]) Let X be a BCK-algebra. For a fixed element $a \in X$, we define a map $R_a : X \to X$ by $R_a(x) = x * a$ for all $x \in X$, and call R_a a *right map* on X. Also, a *left map* on X is defined analogously, and denoted it by L_a .

Obviously, R_0 and L_0 are homomorphisms and so semi-homomorphisms. Generally, both a right map R_a and a left map L_a for $a \neq 0$ on a BCK-algebra may not be semi-homomorphisms as seen in the following examples.

EXAMPLE 3.5. Let $X = \{0, a, b, c, d\}$ be a BCK-algebra with the following Cayley table:

*	0	a	b	c	d
0	0	$\begin{array}{c} 0 \\ 0 \\ b \\ b \\ d \end{array}$	0	0	0
a	a	0	a	0	0
b	b	b	0	0	b
c	c	b	a	0	b
d	d	d	d	d	0

For any $x \in X$, let R_x (resp. L_x) be a right (resp. left) map on X. Then every right map on X is a homomorphism, i.e., R_0 , R_a , R_b , R_c and R_d are all homomorphisms, and hence these are all semi-homomorphisms. But the left map L_x is not a semi-homomorphism for x = a, b, c and d, since $L_x(0) \neq 0$.

EXAMPLE 3.6. Let $X = \{0, a, b, c\}$ be a BCK-algebra with the following Cayley table:

For any $x \in X$, let R_x (resp. L_x) be a right (resp. left) map on X. Then R_0 and R_b are homomorphisms, and so these are semi-homomorphisms. But R_a and R_c are not semi-homomorphisms since $R_a(b) * R_a(a) = a \nleq 0 = R_a(b * a)$ and $R_c(b) * R_c(c) = a \nleq 0 = R_c(b * c)$, and hence R_a and R_c are not homomorphisms. And the left map L_x is not a semi-homomorphism for x = a, b and c, since $L_x(0) \neq 0$.

PROPOSITION 3.7. Let R_a be a right map on a BCK-algebra X. Then the following are equivalent:

- (i) R_a is a semi-homomorphism,
- (ii) R_a is a homomorphism,
- (iii) $R_a = R_a^2$.

Proof. (i) \Rightarrow (ii) Assume that R_a is a semi-homomorphism. Since $0 \leq a$ by (a3), it follows from (b1) and (b4) that $y * a \leq y$ for all $y \in X$. Then

$$R_a(x * y) = (x * y) * a = (x * a) * y \le (x * a) * (y * a) = R_a(x) * R_a(y)$$

for all $x, y \in X$ by using (b2) and (b4). Hence R_a is a homomorphism. (ii) \Rightarrow (iii) Assume that R_a is a homomorphism. Then

$$R_a^2(x) = R_a(R_a(x)) = R_a(x * a) = R_a(x) * R_a(a) = R_a(x)$$

for all $x \in X$. Hence $R_a = R_a^2$.

(iii) \Rightarrow (i) Assume that $R_a^2 = R_a^2$. It follows from (b2), (b3) and (b4) that

$$R_{a}(x) * R_{a}(y) = R_{a}^{2}(x) * R_{a}(y) = ((x * a) * a) * (y * a)$$

= ((x * a) * (y * a)) * a
$$\leq (x * y) * a = R_{a}(x * y)$$

for all $x, y \in X$. Hence R_a is a semi-homomorphism.

Consider a left map L_a on a BCK-algebra X. If L_a is a semi-homomorphism, then $0 = L_a(0) = a * 0 = a$. Hence we have the following proposition.

PROPOSITION 3.8. For a left map L_a on a BCK-algebra X, the following are equivalent:

- (i) L_a is a semi-homomorphism,
- (ii) L_a is a homomorphism,

(iii) a = 0.

THEOREM 3.9. If $f : X \to Y$ is a semi-homomorphism of BCK-algebras, then the set

$$\ker(f) := \{ x \in X \mid f(x) = 0 \}$$

is an ideal of X.

Proof. Obviously $0 \in \ker(f)$ by (d1). Let $x, y \in X$ be such that $y \in \ker(f)$ and $x * y \in \ker(f)$. Then f(y) = 0 and f(x * y) = 0. It follows from (b1) and (d2) that

$$f(x) = f(x) * 0 = f(x) * f(y) \le f(x * y) = 0$$

so that f(x) = 0, i.e., $x \in \ker(f)$. Therefore $\ker(f)$ is an ideal of X. \Box

Theorem 3.9 is a generalization of [4, Proposition 10].

We give a characterization of a semi-homomorphism of BCK-algebras. We first need the following lemma.

LEMMA 3.10. ([3]) If A is an ideal of a BCK-algebra X and a is not contained in A, then there is an irreducible ideal B of X such that $A \subseteq B$ and $a \notin B$.

Note that $\langle a \rangle$ is the ideal generated by a in a BCK-algebra X. If $x \not\leq y$ for $x, y \in X$, then $\langle y \rangle$ is an ideal of X which does not contain x. Hence we have the following corollary.

COROLLARY 3.11. If $x \not\leq y$ in a BCK-algebra X, then there is an irreducible ideal B of X such that $y \in B$ and $x \notin B$.

THEOREM 3.12. Let $f : X \to Y$ be a mapping of BCK-algebras. Then f is a semi-homomorphism if and only if it satisfies:

(3.1)
$$(\forall B \subseteq Y) (B \in Id(Y) \Rightarrow f^{-1}(B) \in Id(X)).$$

Proof. Assume that f is a semi-homomorphism. Let $B \in Id(Y)$. Obviously $0 \in f^{-1}(B)$ by (d1). Let $x, y \in X$ be such that $x * y \in f^{-1}(B)$ and $y \in f^{-1}(B)$. Then $f(x * y) \in B$ and $f(y) \in B$. Since $f(x) * f(y) \leq f(x * y)$ by (d2), it follows from (2.1) that $f(x) * f(y) \in B$ so from (c2) that $f(x) \in B$, i.e., $x \in f^{-1}(B)$. Therefore $f^{-1}(B) \in Id(X)$. Conversely suppose that f satisfies (3.1). If $f(0) \neq 0$, then there exists an ideal Cof Y such that $f(0) \notin C$, i.e., $0 \notin f^{-1}(C)$. This is a contradiction, and so f(0) = 0. Assume that (d2) is not valid. Then $f(x) * f(y) \nleq f(x * y)$ for some $x, y \in X$. It follows from Corollary 3.11 that there exists an irreducible ideal B of Y such that $f(x * y) \in B$ and $f(x) * f(y) \notin B$. Consider the ideal $\langle B \cup \{f(y)\} \rangle$ of Y generated by $B \cup \{f(y)\}$. Then $f(x) \notin \langle B \cup \{f(y)\} \rangle$ because if not then

$$(\cdots ((f(x) * f(y)) * b_1) * \cdots) * b_n = 0 \in B$$

for some $b_1, b_2, \dots, b_n \in B$. Since B is an ideal of Y, it follows from (c2) that $f(x) * f(y) \in B$, which is a contradiction. Using Lemma 3.10, there exists an irreducible ideal Q of Y such that $\langle B \cup \{f(y)\} \rangle \subseteq Q$ and $f(x) \notin Q$, that is, $B \subseteq Q$, $y \in f^{-1}(Q)$ and $x \notin f^{-1}(Q)$. Since $x * y \in f^{-1}(B) \subseteq f^{-1}(Q)$, it follows from (3.1) and (c2) that $x \in f^{-1}(Q)$. This is a contradiction. Therefore (d2) is valid. \Box

LEMMA 3.13. Let $f: X \to Y$ be a homomorphism of BCK-algebras. For any $A \in IId(X)$, let

$$(3.2) \qquad [f(X \setminus A)) := \{ y \in Y \mid f(a) \le y \text{ for some } a \in X \setminus A \}.$$

Then $[f(X \setminus A))$ is an order system of Y.

Proof. Let $y \in Y$ and $w \in [f(X \setminus A))$ be such that $w \leq y$. Then there exists $a \in X \setminus A$ such that $f(a) \leq w$. It follows from the transitivity of \leq that $f(a) \leq y$ so that $y \in [f(X \setminus A))$. Hence (c3) is valid. Now let $x, y \in [f(X \setminus A))$. Then there exist $a, b \in X \setminus A$ such that $f(a) \leq x$ and $f(b) \leq y$. Obviously $f(a), f(b) \in [f(X \setminus A))$. Therefore (c4) is valid. \Box

LEMMA 3.14. ([5]) Let $A \in Id(X)$ and $I \in Os(X)$. If A and I are disjoint, then there exists an irreducible ideal B of X such that $A \subseteq B$ and $B \cap I = \emptyset$.

We provide a condition for a semi-homomorphism to be a homomorphism.

THEOREM 3.15. Let $f : X \to Y$ be a semi-homomorphism of BCKalgebras. Then the following assertions are equivalent:

- (i) f is a homomorphism,
- (ii) For every $A \in IId(X)$ and $B \in IId(Y)$,

(3.3)
$$f^{-1}(B) \subseteq A \Rightarrow (\exists P \in IId(Y))(B \subseteq P, f^{-1}(P) = A).$$

Proof. Assume that f is a homomorphism. Let $A \in IId(X)$ and $B \in IId(Y)$ be such that $f^{-1}(B) \subseteq A$. Consider the ideal $\langle B \cup f(A) \rangle$ of Y generated by $B \cup f(A)$. By means of Lemma 3.13, $[f(X \setminus A))$ is an order system of Y. Now we prove that $\langle B \cup f(A) \rangle$ and $[f(X \setminus A))$ are disjoint. Suppose that they are not disjoint and take $w \in \langle B \cup f(A) \rangle \cap [f(X \setminus A))$. Then $f(a) \leq w$ for some $a \in X \setminus A$ and

$$(\cdots ((w * f(a_1)) * f(a_2)) * \cdots) * f(a_n) \in B$$

for some $a_1, a_2, \dots, a_n \in A$. Using (b4), we have

$$(\cdots ((f(a) * f(a_1)) * f(a_2)) * \cdots) * f(a_n) \leq (\cdots ((w * f(a_1)) * f(a_2)) * \cdots) * f(a_n).$$

Since B is an ideal of Y, it follows from (2.1) that

$$(\cdots ((f(a) * f(a_1)) * f(a_2)) * \cdots) * f(a_n) \in B.$$

Since f is a homomorphism, we have

$$f((\cdots((a*a_1)*a_2)*\cdots)*a_n) \in B,$$

and so $(\cdots((a * a_1) * a_2) * \cdots) * a_n \in f^{-1}(B) \subseteq A$. It follows from (c2) that $a \in A$. This is a contradiction. By Lemma 3.14, there exists an irreducible ideal P of Y such that $\langle B \cup f(A) \rangle \subseteq P$ and $P \cap [f(X \setminus A)) = \emptyset$. It follows that $B \subseteq P$ and $f(A) \subseteq P$ so that $A \subseteq f^{-1}(P)$. Now if $x \in f^{-1}(P)$, then $f(x) \in P$. Since $P \cap [f(X \setminus A)) = \emptyset$, we have $f(x) \notin$ $[f(X \setminus A))$, and so $x \in A$. Therefore $A = f^{-1}(P)$. Conversely suppose that (3.3) is valid. Let $a, b \in X$ be such that $f(a * b) \nleq f(a) * f(b)$. Then there exists an irreducible ideal B of Y such that $f(a) * f(b) \in B$ and $a * b \notin f^{-1}(B)$. Since f is a semi-homomorphism, $f^{-1}(B) \in Id(X)$ by (3.1). Consider the ideal $\langle f^{-1}(B) \cup \{b\} \rangle$ of X generated by $f^{-1}(B) \cup \{b\}$. Then $a \notin \langle f^{-1}(B) \cup \{b\} \rangle$. For, if not then $a * b \in f^{-1}(B)$, a contradiction. Using Lemma 3.10, there exists $A \in IId(X)$ such that $\langle f^{-1}(B) \cup \{b\} \rangle \subseteq$ A and $a \notin A$, that is, $f^{-1}(B) \subseteq A$, $b \in A$ and $a \notin A$. It follows from (3.3) that there exists $P \in IId(Y)$ such that $B \subseteq P$ and $f^{-1}(P) = A$. Since $f(a) * f(b) \in B \subseteq P$ and $f(b) \in f(A) \subseteq P$, we have $f(a) \in P$ by (c2), which is a contradiction. Hence f is a homomorphism. \Box

Let $f: X \to Y$ be a homomorphism of BCK-algebras and let

(3.4)
$$\tau := \{ B \in IId(Y) \mid f^{-1}(B) \in IId(X) \}.$$

Consider a mapping

(3.5)
$$\Phi: \tau \to IId(X), \ B \mapsto f^{-1}(B)$$

Let $A \in IId(X)$ and consider the ideal $\langle f(A) \rangle$ of Y. We will prove that if f is injective, then $\langle f(A) \rangle$ and $[f(X \setminus A))$ are disjoint. Let f be injective. Assume that $\langle f(A) \rangle \cap [f(X \setminus A)) \neq \emptyset$ and take $y \in \langle f(A) \rangle \cap [f(X \setminus A))$. Then $y \in \langle f(A) \rangle$ and $y \in [f(X \setminus A))$, and hence $f(b) \leq y$ for some $b \in X \setminus A$ and

$$(\cdots ((y * f(a_1)) * f(a_2)) * \cdots) * f(a_n) = 0$$

for some $a_1, a_2, \dots, a_n \in A$. It follows from (b4) that

$$(\cdots ((f(b) * f(a_1)) * f(a_2)) * \cdots) * f(a_n) \leq (\cdots ((y * f(a_1)) * f(a_2)) * \cdots) * f(a_n) = 0$$

so that

$$f((\cdots ((b * a_1) * a_2) * \cdots) * a_n)$$

= $(\cdots ((f(b) * f(a_1)) * f(a_2)) * \cdots) * f(a_n)$
= $0 = f(0).$

Since f is injective, we get

$$(\cdots ((b * a_1) * a_2) * \cdots) * a_n = 0 \in A$$

and hence $b \in A$ by (c2). This is a contradiction. Therefore $\langle f(A) \rangle$ and $[f(X \setminus A))$ are disjoint. Using Lemma 3.14, there exists $B \in IId(Y)$ such that $f(A) \subseteq B$ and $B \cap [f(X \setminus A)) = \emptyset$, that is, $f^{-1}(B) = A$. Hence Φ is surjective. Now suppose that Φ is surjective and let $a, b \in X$ be such that $b \not\leq a$. Then there exists an irreducible ideal A of X such that $a \in A$ and $b \notin A$. Since Φ is surjective,

$$(\exists B \in \tau \subseteq IId(Y)) (f^{-1}(B) = A).$$

Thus $a \in f^{-1}(B)$ and $b \notin f^{-1}(B)$, i.e., $f(a) \in B$ and $f(b) \notin B$. It follows that $f(b) \not\leq f(a)$, which implies that f is injective. Hence we have the following theorem.

THEOREM 3.16. Let $f : X \to Y$ be a homomorphism of BCKalgebras. For a mapping Φ which is given in (3.5), the following are equivalent:

(i) f is injective,

(ii) Φ is surjective.

References

- Y. Imai and K. Iséki, On axiom systems of propositional calculi, Proc. Jpn. Acad. 42 (1966), 19-21.
- [2] K. Iséki, On ideals in BCK-algebras, Math. Seminar Notes 3 (1975), 1–12.
- [3] K. Iséki, On some ideals in BCK-algebras, Math. Seminar Notes 3 (1975), 65–70.
- [4] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), no. 1, 1–26.
- [5] Y. B. Jun, K. J. Lee and C. H. Park, A method to make BCK-algebras, Commun. Korean Math. Soc. 22 (2007), No. 4, 503-508.
- [6] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co. Korea, 1994.
- [7] M. Palasiński, On ideals and congruence lattices of BCK-algebras, Math. Seminar Notes 9 (1981), 441–443.

*

Department of Mathematics Education Hannam University Daejeon 306-791, Republic of Korea *E-mail*: kjlee@hnu.kr

**

Department of Mathematics Education (and RINS) Gyeongsang National University Chinju 660-701, Republic of Korea *E-mail*: skywine@gmail.com