SEMI-HOMOMORPHISMS OF BCK-ALGEBRAS

Kyoung Ja Lee* and Young Bae Jun**

Abstract

As a generalization of a homomorphism of BCK-algebras, the notion of a semi-homomorphism of BCK-algebras is introduced, and its characterization is given. A condition for a semi-homomorphism to be a homomorphism is provided.

1. Introduction

BCK-algebras entered into mathematics in 1966 through the work of Imai and Iséki [1], and have been applied to many branches of mathematics, such as group theory, functional analysis, probability theory and topology. Such algebras generalize Boolean rings as well as Boolean D-posets (= $M V$-algebras). The notion of homomorphisms of BCKalgebras play an important role in studying BCK-algebras and related algebraic structures. As a generalization of a homomorphism of BCKalgebras, we introduce the notion of a semi-homomorphism of BCKalgebras, and give its characterization. We provide a condition for a semi-homomorphism to be a homomorphism.

2. Preliminaries

We first display basic concepts on BCK-algebras. By a BCK-algebra we mean an algebra $(X ; *, 0)$ of type $(2,0)$ satisfying the axioms:
(a1) $(\forall x, y, z \in X)(((x * y) *(x * z)) *(z * y)=0)$,
(a2) $(\forall x, y \in X)((x *(x * y)) * y=0)$,
(a3) $(\forall x \in X)(x * x=0,0 * x=0)$,
(a4) $(\forall x, y \in X)(x * y=0, y * x=0 \Rightarrow x=y)$.

[^0]We can define a partial ordering \leq by $x \leq y$ if and only if $x * y=0$. A BCK-algebra X is said to be bounded if there exists the bound 1 such that $x \leq 1$ for all $x \in X$.

In any BCK-algebra X, the following hold:
(b1) $(\forall x \in X)(x * 0=x)$,
(b2) $(\forall x, y, z \in X)((x * y) * z=(x * z) * y)$,
(b3) $(\forall x, y, z \in X)((x * z) *(y * z) \leq x * y)$,
(b4) $(\forall x, y, z \in X)(x \leq y \Rightarrow x * z \leq y * z, z * y \leq z * x)$.
A mapping $f: X \rightarrow Y$ of BCK-algebras is called a homomorphism if $f(x * y)=f(x) * f(y)$ for all $x, y \in X$. Note that if $f: X \rightarrow Y$ is a homomorphism of BCK-algebras, then $f(0)=0$.

A subset A of a BCK-algebra X is called an ideal of X if it satisfies:
(c1) $0 \in A$,
(c2) $(\forall x \in A)(\forall y \in X)(y * x \in A \Rightarrow y \in A)$.
Note that every ideal A of a BCK-algebra X satisfies:

$$
\begin{equation*}
(\forall x \in A)(\forall y \in X)(y \leq x \Rightarrow y \in A) \tag{2.1}
\end{equation*}
$$

The set of all ideals of a BCK-algebra X is denoted by $\operatorname{Id}(X)$. It is known that $\operatorname{Id}(X)$ is an infinitely distributive lattice (see [7]).

If A is a nonempty subset of a BCK-algebra X, then the ideal of X generated by A, in symbol $\langle A\rangle$, is the set (see [2, Theorem 3])

$$
\langle A\rangle=\left\{\begin{array}{l|l}
x \in X & \begin{array}{l}
\left(\cdots\left(\left(x * a_{0}\right) * a_{1}\right) * \cdots\right) * a_{n}=0 \\
\text { for some } a_{0}, a_{1}, \cdots, a_{n} \in A
\end{array} \tag{2.2}
\end{array}\right\}
$$

If $A=\{a\}$, then we denote $\langle\{a\}\rangle$ by $\langle a\rangle$ and call it as the ideal of X generated by a.

Definition 2.1. ([3]) An ideal A of a BCK-algebra X is said to be irreducible if it satisfies:

$$
\begin{equation*}
(\forall B, C \in \operatorname{Id}(X))(A=B \cap C \Rightarrow A=B \text { or } A=C) . \tag{2.3}
\end{equation*}
$$

Denote by $\operatorname{IId}(X)$ the set of all irreducible ideals of X.
Definition 2.2. ([5]) A subset I of a BCK-algebra X is called an order system of X if it satisfies:
(c3) I is an upper set, that is, I satisfies:

$$
(\forall x \in X)(\forall y \in I)(y \leq x \Rightarrow x \in I),
$$

(c4) $(\forall x, y \in I)(\exists z \in I)(z \leq x, z \leq y)$.
Denote by $\operatorname{Os}(X)$ the set of all order systems of X.

3. Semi-homomorphisms

Definition 3.1. A mapping $f: X \rightarrow Y$ of BCK-algebras is called a semi-homomorphism if it satisfies:
(d1) $f(0)=0$,
(d2) $(\forall x, y \in X)(f(x) * f(y) \leq f(x * y))$.
Note that every homomorphism of BCK-algebras is also a semi-homomorphism, but the converse is not true in general as seen in the following examples.

Example 3.2. Let $X=\{0, a, b, c, d\}$ be a BCK-algebra with the following Cayley table:

$*$	0	a	b	c	d
0	0	0	0	0	0
a	a	0	0	0	0
b	b	a	0	0	0
c	c	a	a	0	0
d	d	a	a	a	0

Define a mapping $f: X \rightarrow X$ by $f(0)=0, f(a)=b, f(b)=c, f(c)=$ d and $f(d)=d$. Then f is a semi-homomorphism, but f is not a homomorphism since $f(c * a)=b \neq a=f(c) * f(a)$.

Example 3.3. Let $X_{1}=X_{2}=\{0, a, b, c\}$ be BCK-algebras with the following Cayley tables respectively:

$*_{1}$	0	a	b	c
0	0	0	0	0
a	a	0	a	a
b	b	b	0	b
c	c	c	c	0

$*_{2}$	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	a	0	0
c	c	a	a	0

Define a mapping $f: X_{1} \rightarrow X_{2}$ by $f(0)=0, f(a)=a, f(b)=c$ and $f(c)=b$. Then f is a semi-homomorphism, but f is not a homomorphism since $f\left(a *_{1} b\right)=a \neq 0=f(a) *_{2} f(b)$.

Definition 3.4. ([6]) Let X be a BCK-algebra. For a fixed element $a \in X$, we define a map $R_{a}: X \rightarrow X$ by $R_{a}(x)=x * a$ for all $x \in X$, and call R_{a} a right map on X. Also, a left map on X is defined analogously, and denoted it by L_{a}.

Obviously, R_{0} and L_{0} are homomorphisms and so semi-homomorphisms. Generally, both a right map R_{a} and a left map L_{a} for $a \neq 0$ on a

BCK-algebra may not be semi-homomorphisms as seen in the following examples.

Example 3.5. Let $X=\{0, a, b, c, d\}$ be a BCK-algebra with the following Cayley table:

$*$	0	a	b	c	d
0	0	0	0	0	0
a	a	0	a	0	0
b	b	b	0	0	b
c	c	b	a	0	b
d	d	d	d	d	0

For any $x \in X$, let R_{x} (resp. L_{x}) be a right (resp. left) map on X. Then every right map on X is a homomorphism, i.e., $R_{0}, R_{a}, R_{b}, R_{c}$ and R_{d} are all homomorphisms, and hence these are all semi-homomorphisms. But the left map L_{x} is not a semi-homomorphism for $x=a, b, c$ and d, since $L_{x}(0) \neq 0$.

Example 3.6. Let $X=\{0, a, b, c\}$ be a BCK-algebra with the following Cayley table:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	a	0	a
c	c	c	c	0

For any $x \in X$, let R_{x} (resp. L_{x}) be a right (resp. left) map on X. Then R_{0} and R_{b} are homomorphisms, and so these are semi-homomorphisms. But R_{a} and R_{c} are not semi-homomorphisms since $R_{a}(b) * R_{a}(a)=a \not \leq$ $0=R_{a}(b * a)$ and $R_{c}(b) * R_{c}(c)=a \not \leq 0=R_{c}(b * c)$, and hence R_{a} and R_{c} are not homomorphisms. And the left map L_{x} is not a semihomomorphism for $x=a, b$ and c, since $L_{x}(0) \neq 0$.

Proposition 3.7. Let R_{a} be a right map on a BCK-algebra X. Then the following are equivalent:
(i) R_{a} is a semi-homomorphism,
(ii) R_{a} is a homomorphism,
(iii) $R_{a}=R_{a}^{2}$.

Proof. (i) \Rightarrow (ii) Assume that R_{a} is a semi-homomorphism. Since $0 \leq a$ by (a3), it follows from (b1) and (b4) that $y * a \leq y$ for all $y \in X$. Then

$$
R_{a}(x * y)=(x * y) * a=(x * a) * y \leq(x * a) *(y * a)=R_{a}(x) * R_{a}(y)
$$

for all $x, y \in X$ by using (b2) and (b4). Hence R_{a} is a homomorphism.
(ii) \Rightarrow (iii) Assume that R_{a} is a homomorphism. Then

$$
R_{a}^{2}(x)=R_{a}\left(R_{a}(x)\right)=R_{a}(x * a)=R_{a}(x) * R_{a}(a)=R_{a}(x)
$$

for all $x \in X$. Hence $R_{a}=R_{a}^{2}$.
(iii) \Rightarrow (i) Assume that $R_{a}=R_{a}^{2}$. It follows from (b2), (b3) and (b4) that

$$
\begin{aligned}
R_{a}(x) * R_{a}(y) & =R_{a}^{2}(x) * R_{a}(y)=((x * a) * a) *(y * a) \\
& =((x * a) *(y * a)) * a \\
& \leq(x * y) * a=R_{a}(x * y)
\end{aligned}
$$

for all $x, y \in X$. Hence R_{a} is a semi-homomorphism.
Consider a left map L_{a} on a BCK-algebra X. If L_{a} is a semi-homomorphism, then $0=L_{a}(0)=a * 0=a$. Hence we have the following proposition.

Proposition 3.8. For a left map L_{a} on a BCK-algebra X, the following are equivalent:
(i) L_{a} is a semi-homomorphism,
(ii) L_{a} is a homomorphism,
(iii) $a=0$.

THEOREM 3.9. If $f: X \rightarrow Y$ is a semi-homomorphism of BCKalgebras, then the set

$$
\operatorname{ker}(f):=\{x \in X \mid f(x)=0\}
$$

is an ideal of X.
Proof. Obviously $0 \in \operatorname{ker}(f)$ by (d1). Let $x, y \in X$ be such that $y \in \operatorname{ker}(f)$ and $x * y \in \operatorname{ker}(f)$. Then $f(y)=0$ and $f(x * y)=0$. It follows from (b1) and (d2) that

$$
f(x)=f(x) * 0=f(x) * f(y) \leq f(x * y)=0
$$

so that $f(x)=0$, i.e., $x \in \operatorname{ker}(f)$. Therefore $\operatorname{ker}(f)$ is an ideal of X.
Theorem 3.9 is a generalization of [4, Proposition 10].
We give a characterization of a semi-homomorphism of BCK-algebras. We first need the following lemma.

Lemma 3.10. ([3]) If A is an ideal of a BCK-algebra X and a is not contained in A, then there is an irreducible ideal B of X such that $A \subseteq B$ and $a \notin B$.

Note that $\langle a\rangle$ is the ideal generated by a in a BCK-algebra X. If $x \not \leq y$ for $x, y \in X$, then $\langle y\rangle$ is an ideal of X which does not contain x. Hence we have the following corollary.

Corollary 3.11. If $x \not \leq y$ in a BCK-algebra X, then there is an irreducible ideal B of X such that $y \in B$ and $x \notin B$.

Theorem 3.12. Let $f: X \rightarrow Y$ be a mapping of BCK-algebras. Then f is a semi-homomorphism if and only if it satisfies:

$$
\begin{equation*}
(\forall B \subseteq Y)\left(B \in I d(Y) \Rightarrow f^{-1}(B) \in I d(X)\right) \tag{3.1}
\end{equation*}
$$

Proof. Assume that f is a semi-homomorphism. Let $B \in \operatorname{Id}(Y)$. Obviously $0 \in f^{-1}(B)$ by (d1). Let $x, y \in X$ be such that $x * y \in f^{-1}(B)$ and $y \in f^{-1}(B)$. Then $f(x * y) \in B$ and $f(y) \in B$. Since $f(x) * f(y) \leq$ $f(x * y)$ by (d 2), it follows from (2.1) that $f(x) * f(y) \in B$ so from (c2) that $f(x) \in B$, i.e., $x \in f^{-1}(B)$. Therefore $f^{-1}(B) \in I d(X)$. Conversely suppose that f satisfies (3.1). If $f(0) \neq 0$, then there exists an ideal C of Y such that $f(0) \notin C$, i.e., $0 \notin f^{-1}(C)$. This is a contradiction, and so $f(0)=0$. Assume that (d2) is not valid. Then $f(x) * f(y) \not \leq f(x * y)$ for some $x, y \in X$. It follows from Corollary 3.11 that there exists an irreducible ideal B of Y such that $f(x * y) \in B$ and $f(x) * f(y) \notin B$. Consider the ideal $\langle B \cup\{f(y)\}\rangle$ of Y generated by $B \cup\{f(y)\}$. Then $f(x) \notin\langle B \cup\{f(y)\}\rangle$ because if not then

$$
\left(\cdots\left((f(x) * f(y)) * b_{1}\right) * \cdots\right) * b_{n}=0 \in B
$$

for some $b_{1}, b_{2}, \cdots, b_{n} \in B$. Since B is an ideal of Y, it follows from (c2) that $f(x) * f(y) \in B$, which is a contradiction. Using Lemma 3.10, there exists an irreducible ideal Q of Y such that $\langle B \cup\{f(y)\}\rangle \subseteq Q$ and $f(x) \notin Q$, that is, $B \subseteq Q, y \in f^{-1}(Q)$ and $x \notin f^{-1}(Q)$. Since $x * y \in f^{-1}(B) \subseteq f^{-1}(Q)$, it follows from (3.1) and (c2) that $x \in f^{-1}(Q)$. This is a contradiction. Therefore (d 2) is valid.

Lemma 3.13. Let $f: X \rightarrow Y$ be a homomorphism of BCK-algebras. For any $A \in \operatorname{IId}(X)$, let

$$
\begin{equation*}
[f(X \backslash A)):=\{y \in Y \mid f(a) \leq y \text { for some } a \in X \backslash A\} \tag{3.2}
\end{equation*}
$$

Then $[f(X \backslash A))$ is an order system of Y.
Proof. Let $y \in Y$ and $w \in[f(X \backslash A))$ be such that $w \leq y$. Then there exists $a \in X \backslash A$ such that $f(a) \leq w$. It follows from the transitivity of \leq that $f(a) \leq y$ so that $y \in[f(X \backslash A))$. Hence (c3) is valid. Now let $x, y \in[f(X \backslash A))$. Then there exist $a, b \in X \backslash A$ such that $f(a) \leq x$ and $f(b) \leq y$. Obviously $f(a), f(b) \in[f(X \backslash A))$. Therefore (c4) is valid.

Lemma 3.14. ([5]) Let $A \in I d(X)$ and $I \in O s(X)$. If A and I are disjoint, then there exists an irreducible ideal B of X such that $A \subseteq B$ and $B \cap I=\emptyset$.

We provide a condition for a semi-homomorphism to be a homomorphism.

TheOrem 3.15. Let $f: X \rightarrow Y$ be a semi-homomorphism of BCKalgebras. Then the following assertions are equivalent:
(i) f is a homomorphism,
(ii) For every $A \in \operatorname{IId}(X)$ and $B \in \operatorname{IId}(Y)$,

$$
\begin{equation*}
f^{-1}(B) \subseteq A \Rightarrow(\exists P \in I I d(Y))\left(B \subseteq P, f^{-1}(P)=A\right) \tag{3.3}
\end{equation*}
$$

Proof. Assume that f is a homomorphism. Let $A \in \operatorname{IId}(X)$ and $B \in \operatorname{IId}(Y)$ be such that $f^{-1}(B) \subseteq A$. Consider the ideal $\langle B \cup f(A)\rangle$ of Y generated by $B \cup f(A)$. By means of Lemma 3.13, $[f(X \backslash A))$ is an order system of Y. Now we prove that $\langle B \cup f(A)\rangle$ and $[f(X \backslash A))$ are disjoint. Suppose that they are not disjoint and take $w \in\langle B \cup f(A)\rangle \cap[f(X \backslash A))$. Then $f(a) \leq w$ for some $a \in X \backslash A$ and

$$
\left(\cdots\left(\left(w * f\left(a_{1}\right)\right) * f\left(a_{2}\right)\right) * \cdots\right) * f\left(a_{n}\right) \in B
$$

for some $a_{1}, a_{2}, \cdots, a_{n} \in A$. Using (b4), we have

$$
\begin{aligned}
& \left(\cdots\left(\left(f(a) * f\left(a_{1}\right)\right) * f\left(a_{2}\right)\right) * \cdots\right) * f\left(a_{n}\right) \\
& \leq\left(\cdots\left(\left(w * f\left(a_{1}\right)\right) * f\left(a_{2}\right)\right) * \cdots\right) * f\left(a_{n}\right) .
\end{aligned}
$$

Since B is an ideal of Y, it follows from (2.1) that

$$
\left(\cdots\left(\left(f(a) * f\left(a_{1}\right)\right) * f\left(a_{2}\right)\right) * \cdots\right) * f\left(a_{n}\right) \in B
$$

Since f is a homomorphism, we have

$$
f\left(\left(\cdots\left(\left(a * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n}\right) \in B
$$

and so $\left(\cdots\left(\left(a * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n} \in f^{-1}(B) \subseteq A$. It follows from (c2) that $a \in A$. This is a contradiction. By Lemma 3.14, there exists an irreducible ideal P of Y such that $\langle B \cup f(A)\rangle \subseteq P$ and $P \cap[f(X \backslash A))=\emptyset$. It follows that $B \subseteq P$ and $f(A) \subseteq P$ so that $A \subseteq f^{-1}(P)$. Now if $x \in f^{-1}(P)$, then $f(x) \in P$. Since $P \cap[f(X \backslash A))=\emptyset$, we have $f(x) \notin$ $\left[f(X \backslash A)\right.$), and so $x \in A$. Therefore $A=f^{-1}(P)$. Conversely suppose that (3.3) is valid. Let $a, b \in X$ be such that $f(a * b) \not \leq f(a) * f(b)$. Then there exists an irreducible ideal B of Y such that $f(a) * f(b) \in B$ and $a * b \notin f^{-1}(B)$. Since f is a semi-homomorphism, $f^{-1}(B) \in I d(X)$ by (3.1). Consider the ideal $\left\langle f^{-1}(B) \cup\{b\}\right\rangle$ of X generated by $f^{-1}(B) \cup\{b\}$. Then $a \notin\left\langle f^{-1}(B) \cup\{b\}\right\rangle$. For, if not then $a * b \in f^{-1}(B)$, a contradiction. Using Lemma 3.10, there exists $A \in I I d(X)$ such that $\left\langle f^{-1}(B) \cup\{b\}\right\rangle \subseteq$
A and $a \notin A$, that is, $f^{-1}(B) \subseteq A, b \in A$ and $a \notin A$. It follows from (3.3) that there exists $P \in \operatorname{IId}(Y)$ such that $B \subseteq P$ and $f^{-1}(P)=A$. Since $f(a) * f(b) \in B \subseteq P$ and $f(b) \in f(A) \subseteq P$, we have $f(a) \in P$ by (c2), which is a contradiction. Hence f is a homomorphism.

Let $f: X \rightarrow Y$ be a homomorphism of BCK-algebras and let

$$
\begin{equation*}
\tau:=\left\{B \in \operatorname{IId}(Y) \mid f^{-1}(B) \in \operatorname{IId}(X)\right\} . \tag{3.4}
\end{equation*}
$$

Consider a mapping

$$
\begin{equation*}
\Phi: \tau \rightarrow \operatorname{IId}(X), B \mapsto f^{-1}(B) . \tag{3.5}
\end{equation*}
$$

Let $A \in \operatorname{IId}(X)$ and consider the ideal $\langle f(A)\rangle$ of Y. We will prove that if f is injective, then $\langle f(A)\rangle$ and $[f(X \backslash A))$ are disjoint. Let f be injective. Assume that $\langle f(A)\rangle \cap[f(X \backslash A)) \neq \emptyset$ and take $y \in\langle f(A)\rangle \cap[f(X \backslash A))$. Then $y \in\langle f(A)\rangle$ and $y \in[f(X \backslash A))$, and hence $f(b) \leq y$ for some $b \in X \backslash A$ and

$$
\left(\cdots\left(\left(y * f\left(a_{1}\right)\right) * f\left(a_{2}\right)\right) * \cdots\right) * f\left(a_{n}\right)=0
$$

for some $a_{1}, a_{2}, \cdots, a_{n} \in A$. It follows from (b4) that

$$
\begin{aligned}
& \left(\cdots\left(\left(f(b) * f\left(a_{1}\right)\right) * f\left(a_{2}\right)\right) * \cdots\right) * f\left(a_{n}\right) \\
& \quad \leq\left(\cdots\left(\left(y * f\left(a_{1}\right)\right) * f\left(a_{2}\right)\right) * \cdots\right) * f\left(a_{n}\right)=0
\end{aligned}
$$

so that

$$
\begin{aligned}
& f\left(\left(\cdots\left(\left(b * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n}\right) \\
& =\left(\cdots\left(\left(f(b) * f\left(a_{1}\right)\right) * f\left(a_{2}\right)\right) * \cdots\right) * f\left(a_{n}\right) \\
& =0=f(0) .
\end{aligned}
$$

Since f is injective, we get

$$
\left(\cdots\left(\left(b * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n}=0 \in A
$$

and hence $b \in A$ by (c2). This is a contradiction. Therefore $\langle f(A)\rangle$ and $[f(X \backslash A))$ are disjoint. Using Lemma 3.14, there exists $B \in \operatorname{IId}(Y)$ such that $f(A) \subseteq B$ and $B \cap[f(X \backslash A))=\emptyset$, that is, $f^{-1}(B)=A$. Hence Φ is surjective. Now suppose that Φ is surjective and let $a, b \in X$ be such that $b \not \leq a$. Then there exists an irreducible ideal A of X such that $a \in A$ and $b \notin A$. Since Φ is surjective,

$$
(\exists B \in \tau \subseteq \operatorname{IId}(Y))\left(f^{-1}(B)=A\right) .
$$

Thus $a \in f^{-1}(B)$ and $b \notin f^{-1}(B)$, i.e., $f(a) \in B$ and $f(b) \notin B$. It follows that $f(b) \notin f(a)$, which implies that f is injective. Hence we have the following theorem.

Theorem 3.16. Let $f: X \rightarrow Y$ be a homomorphism of BCKalgebras. For a mapping Φ which is given in (3.5), the following are equivalent:
(i) f is injective,
(ii) Φ is surjective.

References

[1] Y. Imai and K. Iséki, On axiom systems of propositional calculi, Proc. Jpn. Acad. 42 (1966), 19-21.
[2] K. Iséki, On ideals in BCK-algebras, Math. Seminar Notes 3 (1975), 1-12.
[3] K. Iséki, On some ideals in BCK-algebras, Math. Seminar Notes 3 (1975), 65-70.
[4] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), no. 1, 1-26.
[5] Y. B. Jun, K. J. Lee and C. H. Park, A method to make BCK-algebras, Commun. Korean Math. Soc. 22 (2007), No. 4, 503-508.
[6] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co. Korea, 1994.
[7] M. Palasiński, On ideals and congruence lattices of BCK-algebras, Math. Seminar Notes 9 (1981), 441-443.
*
Department of Mathematics Education
Hannam University
Daejeon 306-791, Republic of Korea
E-mail: kjlee@hnu.kr
**
Department of Mathematics Education (and RINS)
Gyeongsang National University
Chinju 660-701, Republic of Korea
E-mail: skywine@gmail.com

[^0]: Received September 12, 2008; Accepted November 20, 2008.
 2000 Mathematics Subject Classification: Primary 06F35, 06A06; Secondary 03G25.

 Key words and phrases: (irreducible) ideal, order system, semi-homomorphism.
 Correspondence should be addressed to Kyoung Ja Lee, kjlee@hnu.kr.
 This paper has been supported by the 2009 Hannam University Fund.

