Photopolymerization Efficiency of Bis-GMA Dental Resin Composites with New Photosensitizers

새로운 광증감제의 양에 따른 치과용 Bis-GMA 복합수지의 중합효율

  • Sun, Gum-Ju (Department of Dental Laboratory Technology, Gwangju Health College University) ;
  • Jung, Jong-Hyun (Department of Dental Laboratory Technology, Gwangju Health College University)
  • Received : 2009.05.04
  • Accepted : 2009.06.12
  • Published : 2009.06.30

Abstract

Two diketones, 1,2-phenylpropanedione (PD) and diacetyl (DA) were investigated as new visible light photosensitizers for dental composite resin of bis-GMA in order to improve the photopolymerization effect. The photopolymerization efficiency of bis-GMA composite resin containing PD and DA was studied by IR absorption spectroscopy. And the results were compared with that of camphorquinone (CQ). Relative photopolymerization efficiency of the photosensitizers increased in the order of DA < CQ < PD. Thus. PO is a new visible light photosensitizer for dental composite resin with higher photopolymerization efficiency than that of CQ.

치과용 가시광선 종합형 복합수지의 광중합효율을 높이기 위해 합성한 bis-GMA 레진에 2종의 새로운 광중감제인 PD, DA를 넣고 현재 가장 많이 사용되고 있는 광중감제인 CQ와 조사시간 및 광중감제의 양을 증가시키며 광중합효율을 비교한 결과 다음과 간은 결론을 얻었다. 1. Bis-GMA의 합성여부를 적외선 흡수 분광법, 핵자기공명 흡수법 등 분광학적인 방법으로 확인하였으며 핵자기 공명 흡수법으로 확인한 결과 이성질체가 존재함을 알 수 있었다. 2. 조사시간이 증가됨에 따라 광중감제의 종류에 관계없이 광중합효율이 점차 증가되었으며, 약 60초까지 조사였을 때에는 광중합효율이 급격히 증가되었으나 그 이상 조사하여도 광중합효율이 크게 증가되지 않았다. 3. 같은 시간 조사하였을 경우 대체적으로 광중합효율이 증가되었으나 CQ와 DA의 경우는 3.0 mol% 첨가하였을 때에 비해 6.0 mol% 첨가되었을 때의 광중합효율이 오히려 더 낮게 나타나는 양상을 보였다. 4. 같은 시간동안 조사하고, 같은 양의 광중감제를 첨가하였을 경우 DA < CQ < PD 순으로 광중합효율이 높게 나타나서 CQ에 비해 PD를 첨가하였을 때의 광중합효율이 높게 나타났다. 5. 이상의 결과로부터 PD가 CQ를 대체할 수 있는 효율이 좋은 새로운 광중감제로서 사용될 가능성을 보여주었다.

Keywords

References

  1. Nancy JL. Petter L.D, Sheng LB: Two-dimensional gradient plaforms for rapid assessment of dental polymers: A chemical, mechanical and biological evaluation. Dent Mater 23: 1211-1220, 2007. https://doi.org/10.1016/j.dental.2006.11.020
  2. Viljanen EK, Skriffvars, Vallitu PK: Dendritic copolymers and particulate filIer composites for dental applications: Degree of conversion and thermal properties. Dent Mater 23: 1420-1427, 2007. https://doi.org/10.1016/j.dental.2006.11.028
  3. Pearson GP, Longman CM: Water sorption and solubility of rein-based materials following inadequate polymerization by a visible-tight curing system. J Oral Rehab 16: 57-63, 1989 https://doi.org/10.1111/j.1365-2842.1989.tb01317.x
  4. Abdmezak E, Linden L-A, Rabek J: Mechanism of camphorquinone-2(N,N-dimethylamino)ethyl methacrylate initiated photocuring of dental materials. In Proc RadTech Asia Radiation Curing Conference 196-203, 1995.
  5. Alvin HH, Alecio AC, Vasconcellos WA, Furlan M, Oliveira JE, Saad JRC: Analysis of camphorquinone in composite resins as a function of shade. Dent Mater 23: 1245-1249, 2007. https://doi.org/10.1016/j.dental.2006.11.002
  6. Jiang X, Xu H, Yin J: Polymeric amine bearing side-chain thioxanthone as a novel photoinitiator for photopolymerization. Polymer 45: 133-140, 2004. https://doi.org/10.1016/j.polymer.2003.10.058
  7. Inomata K, Minishima Y, Matsumoto T, Tokumaru K: Visible light induced polymerization of methyl methacrylate sensitized by dikertones with peroxides. Polym. J 25: 1199-1202, 1993. https://doi.org/10.1295/polymj.25.1199
  8. Sheela MS, Selvy KT, Krishnan VK, Pal SN: Studies in the synthesis of a methacrylate-based dental restorative resin. J Appl Polym Sci 42: 561-573, 1991. https://doi.org/10.1002/app.1991.070420301
  9. Rueggeberg FA, Hashinger DT, Fairhurst CW: Calibration of FT-IR conversion analysis of contemporary dental resin composites. Dent Mater 6: 241-249, 1990. https://doi.org/10.1016/S0109-5641(05)80005-3
  10. Rueggeberg FA: Determination of resin cure using infrared analysis without an internal standard. Dent Mater 10: 282-286, 1994. https://doi.org/10.1016/0109-5641(94)90076-0
  11. Peutzfeldt A: Quantity of remaining double bonds of diacetyl-containing resins. J Dent Res 73(2): 511-515, 1994.
  12. Burtscher P: Stability of radicals in cured composite materials. Dent Mater 9: 218-221, 1993. https://doi.org/10.1016/0109-5641(93)90064-W
  13. Linden LA: Radiation curing in polymer science and technology Vol IV, Fouassier JP. Rabek JF ed. Elsevier, England. pp. 396, 1993.
  14. Sun GJ, Chae KH: Properties of 2.3-butanedione and 1-phenyl-1,2-propanedione as new photosensitizers for visible light cured dental resin composites. Polymer 41: 6205-6212, 2000. https://doi.org/10.1016/S0032-3861(99)00832-0
  15. Sun GJ: Photopolymerization efficiency of dental resin composites with novel liquid amine photoinitiators. J Dent Hyg Sci 8: 109-115, 2008.
  16. Saimi Y, lshihara K, Nakabayash N: Preparation and visible light polymerization of triethyleneglycol acrylate methacrylate. Polymer J 24:357-363, 1992. https://doi.org/10.1295/polymj.24.357
  17. Ruyter IE, Svaendsen SA: Remaining methacrylate groups in composite restorative materials. Acta Odontol Scand 36: 75-82, 1977. https://doi.org/10.3109/00016357809027569
  18. Antoniadi MH, Rapadogianis Y. Kubin EK. Kubins S: Surface hardness of light-cured and self-cured composite resins. J Prosthet Dent 65: 215-220. 1991. https://doi.org/10.1016/0022-3913(91)90164-R