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(New Unified bounds for the solution of the Lyapunov matrix equation
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Abstract

In this paper, new bounds for the solution of the unified Lyapunov matrix equation for decentralized singularly
perturbed systemare obtained, and some of the existing works using deficient assumptions are also generalized.

Keywords : Lyapunov matrix inequalities, unified system, bound estimates, singularly perturbed system

I. Introduction

Lyapunov matrix equation has played a
fundamental role in various control system analyses
a Thus, finding anexact solution

of the Lyapunov matrix equation is important in most

and design problems

applications. However, for some applications such as
a system stability analysis, we don’t need an exact
solution but the reasonable bound estimates since
obtaining thesolution itself results in very large
computational burden when the dimension of system
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matrices is increased. Therefore, many researchers
have been considerably attracted to this estimation
problem for Riccatiand Lyapunov matrix equation™"®
¥ Also, recently the bound estimates for unified
Lyapunov matrix equation is introduced by Mrabti
and Hmamed™ ™. In this paper, the unified bounds
are presented based on the unified theory introduced
by Middleton and Goodwin"®. However, unfortunately

most results for the bound estimates are based on

using the assumption of A (A+ A T) <9,

M4, +A]+A4,4]) <0, or A (4,4]) <1. But Fang
et alV presented newupper bounds for continuous-
time Lyapunov equation, did not use the common

" assumption that A-+A47 is negative definite. Hence,

the objective of this paper is to extend this work to

unified bounds without the assumption that
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A¢+A¢T+ AA\?A‘PT is asymptotically stable. Also,
these bounds are compared to those for continuous
and discrete-time Lyapunov matrix equations. Bounds

for the trace and the largest eigenvalues will be
presented.

II. Notations and Preliminaries

In this paper, the following notations will be used:
AER™™ is a real matrix, A7 denotes the matrix
transpose, ¢r{4) is the trace of 4, (\(4)) are
arranged in descending order when they are real, ie,
Af(d4) = A (A4) == ) (4) . Re)(A) are arranged
in descending order, ie.,
Re) (A) > Redy(A) == Re\,(A). The matrix
measure induced by the 2-norm is denoted by u,(4)

and MQ(A)=%/\1(A+A3).

Lemma 1" For any matrix 4 and any
symmetric matrix B, set A= W, then we

have

A (A)tr(B) = 2, (B)(nA, (4) —tr(4))
< tr(4B) < X, (A)tr(B) = A, (B)(nA,(4) - tr(4))

In particular, for any positive semidefinite matrix
B, we have

A, (Air(B) < tr(AB) < M1 (A)tr(B)

Lemma 2% Let pupl»)  denotes the matrix
measure induced by the vector norm

I 3:”‘\/:1 Yy zr”\/xTFx where

E=7"T1"' is a positive definite matrix.
Then, the matrix measure u,(A) is defined by
pn(A4) = %AI(EAE*1+A )= p, (T714T)

where the Euclidean norm~induced matrix measure is
given by p,{A)==2{(4+47

Remark: Fang et aV suggested that the

similarity transformation matrix 7 is symmetric and
defined by 7= vE . However, this is not true since
7 may be not symmetrical with respect to any
matrix A. Thus, Fang’s definition should be corrected
as ahove.

Lemma 3™

For symmetric positive semidefinite
matrices 4 and B, with 1 <4,5 > n,

,\w {4B) = )\( AN(B) i i+j<ntl
MijonlAB) = N (AN(B)  if itj=n+l

Lemma 4"™: For real

A B=0,

symmetric  matrices

k
(4B) gH

1+1(AB

k

HlMl

m» ‘n'm»

n i+l(B)

with equality when k=n .

5[ 14]

Lemma For symmetric nxXn matrices A

and B,

ZIC]/\i(A+B) < ‘Z]MAH‘Z}\,-(B)
i=1 i=1

3=

k k k
ZAR—1+1<A+B) = Eknfi+l(A)+E’)‘n—i+1(B)
i=1 i=1 i=1

with equality when k=n,
Lemma 6%
and B,
k
EA AB) < Z‘
i=1 =
Lemma ’7“8] Let ARV, Assume A= TTAT
where 7' is orthogonal and A is diagonal real with

0 < A\{4) <1. Then

. For symmeiric nxXn matrices A

(I—A) ' =T+A+ A%+

Lemma 8"%:(Rayleigh-Ritz Inequality):
IER"Xn and A:ATeRnXﬂ’

For any

M (AaTe < 2T4c < 2 (A)zT
Now, let us consider the unified Lyapnov equation

0=A]P+PA,+AATPA+Q (1

(FH+A4,)" (1+ AAG)= L1 2
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where A;,, P, QER™™", @>0 and A, make an
asymptotically stable matrix, Adenotes the sampling
time. The unified Lyapunov equation has unique
positive definite solution 2. The explicit solution P of
(1) can be given by [16]:

P =S E(4; ,0QE(A,,t)dt 3
0
where
exp(At) = imE(A4,t) continuous—like time
EA » t)= { A0 }
(r+ AA)t/ a discrete — like time

And Sttff (t)dt is given as follows for any real
function f:

ty
F(t)dt  continuous —like time

Y
k=(t,/A)-1

A

E=t,/A

57 f(t)dt =
f(kA) discrete —like time

II. MAIN RESULTS

1. Discrete—Time Systems
Consider the linear shift-invariant decentralized
discrete-time system

y; (k) = Cyx (k)

which for singularly perturbed systems has the
following form
N
c(k+1)= Ay, z(k)+ Ay, (k) + 3 By, (K), =(0) =2,
i=1

Clk+1) = Ay z (k) + Ay, (k) + iv] B k), ¢(0)=¢ ®)
u)= Gzl + Glk)

where A,, By, and C, are given as follows:

_ Adll Ad12 Bdli
A4,= [Adm Apy|’ By = dei]’ Ci=|Cui Cail
In this decentralized system, 4, is assumed to be

a nonsingular matrix, B,,, and C,, are supposed to
be zero. Dropping the fast dynamics of the full-order

Hol 2lotFeX HH YIA9 o oist £ FAR
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system, the reduced-order model of each subsystem
is described by

T, (k+1) = Az, (k) + By, (k) ©)
ysi(k) = Cd()izsi(k) + Dy (k)

where

Agi =Am + Adlz(l“ Adzz)glAdm
By =Byt Aps(I— Ap) "' By
Cpi = Cai + Cdzi(l— Ad22)71Ad21
Dy, = CdZi(I - Ad22)\1Bd2i

2. Estimate Bounds for Lyapunov Matrix
Equation

Many researchers™ ™ have obtained the results
of the upper bound for discrete Lyapuunov matrix
equation. Almost all of the results were based on the
assumption of \,(AAZ%) <1. However, Lee et al®
indicated a drawback of this assumptionfor
discrete-time system. They showed that the stability
of Ay, in discrete-time systems does not imply that
M (A,:44;) is inside the unit circle.

Now, we extend Lee's work to that of
decentralized discret-time system. Consider the
algebraic Lyapunov matrix equation for decentralized
discret-time system

P—AL PAy+@Q =0 )

Since the previous works for upper bound
estimates does not cover the case that ) (4,,47) is
not inside the unit circle, we should make the
following modification. Using the  similarity
transformation, we set P=TTPT, @Q=T7QT,
Agi=T"4,,T. Then, we obtain the modified
Lyapunov equation

(77PT)— (T7AL T~ )N T7PT) (T 4, T)

+(77Q,1)=0 ®

Using (8) and Lemma 8 we can obtain the
following theorems.

Theorem 1: For the decentralized discrete
Lyapunov equation (8),
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tr(P)_%)\ (BB Q) if

P S
1-A (AdOzAdOz) “

\(AgAL) .
Theorem 2! Let P satisfy the decentralized
discrete Lyapunov equation (8). Then we have

where || 4 || =

k N(ET'Q)
EIEPN?:) YR AL P
=1 (U= A Al)

i

where A (AgAL) <1.
Theorem 3. TFor the
Lyapunov equation (8),

decentralized  discrete

1 MNETQ)
WP < N (B)| L3S =
=1, (1= A Ag)

where i=1,2,--, k< n.
Theorem 4: Let the positive definite matrix P be

the solution of (8). If o,(4,,) <1,

[Al (B Q)AL Ay,
' [1_‘7%(’@1)]

tr(AD, Ag)+tr(E' Q)

j—i—E QO] 1<i<n

M (Agidd)
Remark: The theorems presented above are based
on™ ¥ and modified to cover the case that the

common condition A, (A4;,44;) <1 is not valid. With

where o,(4,,) =

applying this modification, more generalized results
are obtained.

3. Unified Systems

Let us consider the lnear decentralized unified

system[%]

o) = Ad,z
C@z( T)

R ©

Y; (T) =

To represent a system that possesses a two—time-
scale property, system (9) can be rewritten as

==X M 46 ¥ SC H
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¢$(T):A¢11$( )+A¢12C(T +2 ¢11 i )

po¢(r) = Az (r) + Ayllr +EB¢2’LUZ 7) (10)

yi(T) = C¢1ix(7) + C¢2i<< )

where zER" and (ER™ are state vectors, v,€R"
is a control vector, and 4,, By, C,; are the constant
In this

decentralized unified system, A4, is assumed to be a
nonsingular matrix, By, and Cj,, are supposed to be

matrices of appropriate  dimension.

zero. By setting the parameter © =0, we assume that
the fast modes ¢ have reached the quasi—steady state
and we drop the fast dynamics of the full-order
system. Then, the behavior of the system can be
Then, the
reduced-order model of each subsystem is described
by

represented by its slow modes.

¢, (1) =
Yy (1) =

dJOz s7 ( ) + qu()iusi (T)

Cooi® (T )+D¢0iu’si(7—) (11)

_ -1
where A¢0i = A¢11 - A¢12A¢22 A¢21

By = By — A¢12A¢22 B¢2¢

_ -1

C¢o¢ - C¢1i - C¢2z $22 A¢21
_ -1

D¢m - C¢2iA¢22 qu'

4. Estimate Bounds for Lyapunov Matrix
Equation
Mrabti and Hmamed™ ™ have developed the
results of the lower and upper bounds for unified
Lyapunov matrix equation. All the results were based
on the assumption of X (A +A%+AA4,,A4%) <

However, since the stability of A4, in unified

systems does not guarantee that X (A4, +Ag,+
AAdyAx) is negative definite. Hence, the objective

of this section is to modify and extend the previous
works by removing this assumption. Consider the

algebraic unified Lyapunov matrix equation
0= A, P+ PAy; + AAL PAy + @ (12)

where A, P, QER™™, @, >0 and A, is an

asymptotically stable matrix. The unified Lyapunov
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equation has unique positive definite solution 2. Since
the previous works for upper bound estimates was
not valid for being A (Auy+Ag4 +AA4,,A%) not
negative definite, we should make the following
modification. Using the similarity transformation, we
set

P=TTPT, Q= T7QT; A= TTAu; T (13)
Also, we obtain (14) with rewriting (12).

P QP Vi=— pr1ig L pl2_piy, p12

_ AP_I/QAdfh P1/2P1/2A¢01_P~1/2 (14)

Then, combining (13) and (14), we obtain the
modified unified Lyapunov equation

pue @(]ISTT/ZZ_ 13_—7/2;1;.2? ple_ ﬁ2%1?172

© i —— (15)
—-A (P71/2A¢Tm Pl 2)(P1/2A¢MP—1/2)

Using (15) and Lemma 5 and 7, we obtain the
following theorems.
Theorem 5: Let the positive definite matrix P be
the solution of (15).
If A (A + AL+ AALAL) <0, then
2 (@)

k
tr(P) <— X, (B) — =
' ' igl,\i(A¢m+A¢€i+AA¢0iA¢€i) 16

M(BE)A(Q)
Ay (A;)ﬁ_ A¢’€i + A%Ag{;@‘ )

(P <— an

Proof: Letting 77PT=P, T"'A,y, T= 4,0, T"QT= @,

we have

P2 601?—7/2=_ };TM/T@ P ﬁzﬁ;ﬁﬁz

- AI;_T/%ZIE- 13—1721;172%1;:/2 (18)
From [15] and (18],
P=AQ+(I+ AAL) Q1+ A A ) +
(r+ 645G adgy+-] (19
M+ DAL QI+ A L) =\ (Bl (20)

where

0|37| 2

M(Bp) =14 AN (At AR+ At ALY (2D
Using Lemma 5, 6, and (20),

YA (P) < ADO@) + X (@By)
+’\¢(§()B;0i)+”']

< AYN(Q+X(By) + X2 (By) ++] (22)

Using Lemma 7 , (21), and assuming A1(B,y) <1,

we have
YA P < A (@ - N\ B
=AY A(0)[1-1-AA(4,, + 4, +A 4,407
A AQ)[-84 (4, + 4, +a4, 4] )
Using Lemma 6, (23) becomes
S AEHAP)IS Y AP =D AT P)
=Y A4(E"P)
<A@ A, + 4, +a4,4) ]
< AG)[ 4.4y~ Z, -aA, 4 )] ()
Since A, (£ ) =x;'(E), we have
Y. A4(P) <A (E)D
S A@[ A (- -4, -a4, 4] (D

From (24), we have

~A(E)A(Qy)
(4, + 4, +A4

$0i

A(P)< (26)

4,.)

This completes the proof.
Theorem 6: Let P satisfy the decentralized unified
Lyapunov equation (15) where

A (Agoi+ Afi+ Adyyid ) <0,

: A0,
r(P)< A(E — A A4
(P) l( )§ ﬂ,,, (—A¢0i - A:o:‘ —-A A¢0iA:°') @0

where i=1,2,...k<n
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i y) A
LT X1y J— L B
=l g T e T A¢0i —-A Ag)orAwi)

Proof: From (27),

[ln—m (_2¢0i - ;‘i:o,' —A 4,4 )]_1

$0i“790i
I V)
AA¢0iA¢0i)1

s [ln (_2¢0i - ‘2;():' -
Then, we have
> Ap)<

’11 (E)Z ﬂ,— (Qo ) [—ﬂn (_2,30; - ;1:01' —-A gng:o; ):l_l (30)

This completes the proof.

Remark: (27) and (28) are dual bounds. The upper
bound for the largest eigenvalue (17) is new. For
A =0, (2) is the same as [1, Theorem 3.71.

Remark: The theorems presented above is based
on™® and newly develope to cover the case that
the common condition X (A,+A4/+AA,A]) <0 is
not valid. With this modification, more generalized
results are obtained.

IV. EXAMPLE

By the definition of the unified system, when
A =0, system (10) becomes a continuous-time
system. So, the numerical examples for continuous-
like unified system are omitted here.

1. Discrete—Time Systems

Example 1: A discrete-time model is obtained from
its continuous-time model®” by discretizing it using
MATLAB function ¢2d with the sampling period
A =0.5. The corresponding discrete-time system
matrix is obtained as

0.8280 0.3147
~-1.1401 —0.0872

B 2.8793  0.4003

19163  1.4194

—0.0016 —-0.0030
0.0026  0.0005
—0.0064 -0.0032
-0.0028 -0.0140

d

From the system matrix of reduced-order model

doi

0.8178  0.3099
-1.1317 —0.0855|, we obtain

A (P) =24.4165, tr(P)=31.1169

The eigenvalues of A, AL, is given by

A, =0.0392, A\, = 2.0138

Since A, (A4,,47) is not stable, we should

overcome  this  difficulty. Then, similarity
transformation matrix 7 is introduced. For this

{0.5 +0.5895i 0.5-0.5895i

example, —1.4773i 1.4773i ] and the

Jordan-transformed matrix and its eigenvalues are
obtained as

_ . [o2808 0
AdOi'AdOA = 0 0 2808 ’

A = A, = 0.2808

Now, the MAgAl) <1 s

removed. Then, the upper bounds are given by the

assumption

theorems described in section 4.4.
The bound in

tr(P) < 46.3829.
By Theorem 2, we obtain tr(P) < 46.3829.
From Theorem 3, we have ¢r(P) < 42.8372.
The bounds in Theorem 4, then yield

Theorem 1, then yields

X (P) < 42.3872, tr(P) < 57.4157

The numerical results show that the best values
for the trace and the largest eigenvalues are 46.3829
and 423872, respectively. As shown above, the
common assumption used for bound estimation
problem has been removed applying similarity
transformation to estimate bounds,
generalized results can be obtained.

and more

2. Unified Systems
Example 2: Consider a fourth-order example with
the system matrix given by [27]



40

At

1 0 -0.64 0.02

0 -05 0345 -1
200 -524 265 0
500 200 0 -100

For unified Lyapunov equation (12), Let A =0.5.
Then, the system matrix is given by

-0.3440 0.6294 -0.0032 —0.0060

-2.2802 -2.1744  0.0052 0.0010
A=A, =

5.7586  0.8006 -2.0128 -0.0064

3.8326  2.8388 —0.0056 —2.0280

We recall the definition of the unified systems.
Then, the discrete-like time case of unified system is
described as

5 x(k) =[¥} x(k).

And the system matrix and transformation matrix
of the reduced-order model are given by

50i

(4, -1 [08178 03099
A=05) |-11317 -0.0855]

[0.5 ~0.5895i 0.5+ 0.5895i:|

1.4773i -1.4773i

’I‘hen’ we obtain A'I(P) =30.5315 IT(P)=386524.

T
The eigenvalues of 4so + 450 +0.54,, or i given
by

A =-19217, A, =2.0276

Using similarity transformation matrix 7, we have
the Jordan-transformed matrix and its eigenvalues
250:‘ + ;i;o.' + 0‘52501‘;1;01

—-1.2677 + 0.766i 0 ,
0 -1.2677 - 0.766i

A =), =— 1.4384

Then, we obtain the numerical results from the

4 S0IHE N2-Q 2lotre ™ HE YFAQ sfof ofsh e FAX
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theorems in Main results. The bounds in Theorem 5,
then yields tr(P) < 38.6524, A, (P) < 35.6976. By
Theorem 6, the bounds are given by

tr(P) < 41.6524, )\, (P) < 37.3953

The numerical results show that the best values
for the trace and the largest eigenvalues are 38.6524
and 356976, respectively. These results are better
than those of bounds of discrete-time systems. As
seen above, when applying similarity transformation,
we are able to overcome the difficulty when the
common assumption of X (A4,+A4]+A4,47) <0 is
not valid Hence, more generalized results are
obtained.

V. CONCLUSION

Stability analysis using bound estimates for the
solution of unified Lyapunov matrix equation is the
topic of this paper. This issue is inspired by the
work of Fang et al and that of Mrabti and
Hmamed™ ™ *®. Based on the upper bounds developed
previously for discrete-time and unified Lyapunov
matrix equationug%], those bounds are extended and
generalized with removing the assumption of
M(A4A4D <1 and A (4,+4]+484,4)0) <0.
When applying similarity transformation to the
theorems for each system, ie., discrete-time, and
unified system, the inequalities for the upper bounds
maintain their validity. The upper bound estimates
are based on the solution of Lyapunov matrix
equation for each system. In addition, the comparison
for discrete-time vs. discrete-like time of unified
system is provided. The numerical results illustrated
by Example 1 and 2 show that the upper bounds for
each system hold true.
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