Subband Affine Projection Adaptive Filter using Variable Step Size and Pipeline Transform

가변 적응상수와 파이프라인 변환을 이용한 부밴드 인접투사 적응필터

  • Choi, Hun (Dept. of Electronic Eng., Dong-Eui University, Convergence of IT Devices Institute) ;
  • Ha, Hong-Gon (Dept. of Electronic Eng., Dong-Eui University) ;
  • Bae, Hyeon-Deok (Dept. of Electrical Eng., Chungbuk Nat'l University)
  • 최훈 (동의대학교 전자공학과, IT융합부품연구소) ;
  • 하홍곤 (동의대학교 전자공학과) ;
  • 배현덕 (충북대학교 전기공학과)
  • Published : 2009.01.25

Abstract

In this paper, we suggest a new technique which employ the pipelined architecture for the implementation of the SAP adaptive filter using variable step size. According as SAP adaptive filter is sufficiently decomposed, a simplified SAP adaptive filter can be derived, and the weights of adaptive sub-filters can be updated by a simple formular without a matrix inversion. The convergence speed and the steady state error of the simplified SAP adaptive filter are improved by using variable step size. For practical implementation, the simplified SAP adaptive sub-filters are transformed by the pipeline technique.

본 논문에서는 가변 스텝사이즈를 사용하는 SAP 적응필터의 구현을 위한 파이프라인 구조를 적용한 새로운 알고리즘을 제안한다. 제안 기법에서는 SAP 적응필터를 부밴드로 충분히 분해함으로써 단순화된 SAP적응필터를 유도할 수 있으며, 적응부필터들의 계수들을 역행렬 연산 없이 간단한 식으로 갱신할 수 있다. 단순화된 SAP 적응 필터의 수렴속도와 정상상태토차는 가변스텝사이즈를 사용함으로서 개선한다. 실제 구현을 위해 단순화된 SAP 적응필터는 파이프라인 기법을 사용하여 변환된다.

Keywords

References

  1. K. Ozeki and T. Umeda, "An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties," Electron, Comm. Jpn., vol. 67-A, no. 5, pp. 19-27, 1984
  2. S. G. Sakaran and A. A. Beex, "Conbergence behavior of the affine projection algorithm," IEEE Trans. Signal Proc., vol. 48, no. 4, pp.1086-1097, April 2000 https://doi.org/10.1109/78.827542
  3. S. Makino, K. Strauss, S. Shimauchi, Y. Haneda, and A. Nakagawa, "Subband stero echo canceller using the projection algorithm with convergence to the true echo path," IEEE Proc. ICASSP 1997, vol. 1, pp. 299-302, Apr. 1997
  4. H. Choi, S. W. Han, and H. D. Bae, "Subband adaptive filtering with maximal decimation using an affine projection algorithm," IEICE Trans. Comm., vol.E89-B, no. 5, pp. 1447-1485, May 2006
  5. S. J. M. Almeida, J. C. M. Bermudez, N. J. Bershad, and M. H. Costa, "A statistical analysis of the affine projection algorithm for unity step size and autoregressive inputs," IEEE Trans. Circuits and Systems-I, vol. 52, no. 7, pp. 1394-1405, Jul. 2005 https://doi.org/10.1109/TCSI.2005.851720
  6. S. S. Pradhan and V. U. Reddy, "A new approach to subband adaptive filtering," IEEE Trans. Signal Proc., vol. 45, no. 3, pp. 655-664, Mar. 1999
  7. R. H. Kwong and E. W. Johnstone, "A variable step size LMS algorithm," IEEE Trans. Signal Proc., vol. 40, no. 7, pp.1633-1642, Jul. 1992 https://doi.org/10.1109/78.143435
  8. H. C. Shin and A. H. Sayed, "Variable step-size NLMS and affine projection algorithm," IEEE Signal Proc. Lett., vol. 11, no. 2, pp. 132-135, Feb. 2004 https://doi.org/10.1109/LSP.2003.821722
  9. K. K. Parhi and D. G. Messerschmitt, "Concurrent architecture for two dimensional recurive digital filtering," IEEE Trans. Circuits and Systems, vol. 36, pp. 813-829, June 1989 https://doi.org/10.1109/31.90397
  10. K. K. Parhi, "Algorithm trnasform for concurrent processors," IEEE Proc., vol. 77, PP. 1879-1895, Dec. 1989 https://doi.org/10.1109/5.48830
  11. N. R. Shanbhag and K. K. Parhi, "Relaxed look-ahead pipelined LMS adaptive filters and their application to ADPCM coder," IEEE Trans. Circuits and Systems-II, vol. 40, pp. 753-766, Dec. 1993 https://doi.org/10.1109/82.260240