산업용 CR영상의 방사선 강도에 따른 잡음특성과 기하학적 구도형성의 해석적 접근

Analytical Approach for the Noise Properties and Geometric Scheme of Industrial CR Images according to Radiation Intensity

  • 황중원 (한양대학교 전자컴퓨터통신공학과) ;
  • 황재호 (한밭대학교 전자공학과) ;
  • 박상기 (한전전력연구원 원자력발전연구소)
  • 발행 : 2009.01.25

초록

산업용 강판튜브 CR영상의 잡음특성과 기하학적 구조에 관한 해석적 접근을 시도한다. 산업현장에서 방사선 측정실험으로 직접 취득한 방사선영상을 방사선강도에 따라 30(개) 이상의 샘플을 수집하였다. 이들 각 영상은 배경부, 두께부 및 튜브내부의 세 영역으로 구성되었는바, 그 가운데 튜브내부영역을 분석 대상으로 삼았다. 통계적이고 함수적인 방법론에 의해 잡음특성을 포함한 기하학적 구조를 분석한다. 영상을 구성하는 화소라인별로 또는 공간적으로 분석을 수행하여 강판튜브의 기하학적 원형 형태가 방사선영상화 과정을 거치면서 일어나는 변형과 잡음속성 변화의 두 가지 특성을 규명한다. 분석시 부합함수와 그 오차를 기하학적 변형의 판별인자로, 표준편차, 평균 및 SN비를 잡음특성 판별인자로 설정하고 방사선투과정도의 영상에서의 실현인 회색도 변화에 따른 이들 인자들의 변화를 고찰하였다. 분석결과, 본래의 원형 구조가 방사선투과 강도에 따라 타원형에서 저반경 원형 그리고 고반경원형의 점차적인 구조 변형을 일으킨다는 사실을 밝혔고, 잡음의 편차가 투과강도에 반비례함을 규명하였다.

In this paper we investigate an analytical approach for noise properties and geometric structure in Computed Radiography(CR) images of industrial steel-tubes. Over thirty diverse radiographic images are sampled from industrial radiography measurements according to radiation intensity. Each image consists of three regions; background, thickness and inner-tube. Among these the region of inner-tube is selected for the object of analysis. Geometric structure which includes the noise generation is analyzed by the statistical and functional methodology. The analysis is carried on spacially and line by line. It verifies the geometrical transfigure from the circle configuration of steel-tube and noise variation. The estimation of fitting function and its error are the geometric factors. The statistics such as standard deviation, mean and signal-to-noise ratio are noise parameters for discrimination. These factors are considered under the intensity variation which is the penetrative strength of radiation. The analysing results show that the original geometry of circle is preserved in the form of elliptic or short/long diameter circle, and the noise deviation has increased inverse proportional to the radiation intensity.

키워드

참고문헌

  1. R. J. Patei, "Digital applications of radiography," in Proc. of 3rd MENDT, Manama, Barain, Nov. 2005
  2. E. Deprins, "Computed radiography in NDT applications," in Proc. of 16th WCNDT, Montreal, Canada, Aug. 2004
  3. H. H. Barrett and W. Swindell, Radiographic imaging, Academic Press, 1981
  4. C. Melvin and K. Sbdel-Hadi, "A simulated comparison of turnstile and Poisson photons for X-ray imaging," in Proc. of IEEE CCECE, pp. 1165-1170, Manitoba, Canada, May 2002
  5. E. R. Williams, J. E. Faller and H. A. Hill, "New experimental test of Coulomb's Law: a laboratory upper limit on the photon rest mass," Physical Review Letters, Physical Review Letters, Vol. 26, pp. 721-724, March 1971 https://doi.org/10.1103/PhysRevLett.26.721
  6. C. Gueudre, J. Moysan and G. Corneloup, "Weld quality control by radioscopy using edge and area segmentation method," in Proc. of 15th WCNDT, Roma, Italy, Oct. 2000
  7. N. Nafaa, D. Redouane and B. Amar, “Weld defect extraction and classification in radiographic testing based artificial neural networks,” in Proc. of 15th WCNDT, Roma, Italy, Oct. 2000
  8. X. Zhang and J. Xu and Y. Li, "The research of defect recongition for radiographic weld image based on fuzzy neural network," in Proc. of 5th WCICA, Hangzhou, China, June 2004
  9. D. Redouane, K. Yacine, A. Amal, A. Farid and B. Amar, "Evaluation of corroded pipelines wall thickness using image processing in industrial radiography," in Proc. of 15th WCNDT, Roma, Italy, Oct. 2000
  10. C. Daniel and F. S. Wood, Fitting Equations to Data, John Wiley & Sons, New York, 1980
  11. O. Alekseychuk, Detection of crack-like indications in digital radiography by global optimization of a probabilistic estimation function, PhD Thesis, BAM-Dissertationsreihe, Band 18, Berlin, Germany, 2006
  12. X. Wang, B. S. Wong, C. G. Tui, K. P. Khoo and F. Foo, "Image enhancement for radiographic non-destructive inspection of the aircraft," in Proc. of 12th A-PCNDT 2006, Auckland, New Zealand, Nov. 2006