References
- M. L. Kothari, S. Madnani, and R. Segal, 'Orthogonal Least Square Learning Algorithm Based Radial Basis Function Network Adaptive Power System Stabilizer', Proceeding of IEEE SMC, Vol. 1, pp. 542-547, 1997 https://doi.org/10.1109/ICSMC.1997.625808
- J.S Roger Jang, C.T. Sun, 'Functional equivalence between radial basis function networks and fuzzy inference systems', IEEE Trans. Neural Networks, Vol. 4, No.1, pp. 156-158, 1993 https://doi.org/10.1109/72.182710
- J. C. Bezdek, 'Pattern Recognition with Fuzzy Objective Function Algorithms', Plenum Press, New York, 1981
- K. Z. Mao, 'RBF Neural Network Center Selection Based on Fisher Ratio Class Separability Measure', IEEE Trans. Neural Network, Vol. 13, No.5, pp.1211-1217, 2002 https://doi.org/10.1109/TNN.2002.1031953
- A. C. Micchelli, 'Interpolation of scattered data:Distance matrices and conditionally positive definite functions', Construct. Approx, Vol. 2, pp. 11-22, 1986 https://doi.org/10.1007/BF01893414
- M. J. D. Powell, 'Radial basis functions for multivariable interpolation: A review', in Proc. IMA Conf. Algorithms for the Approximation of Functions and Data, Shrivenham, U.K., 1985
- D. S. Broomhead and D. Lowe, 'Multivariable functional interpolation and adaptive networks', Complex Syst., Vol. 2, pp. 321-355, 1988
- Richard O. Duda, Peter E. Hart, David G. Stork, 'Pattern Classification; Second Edition', John Wiley&Sons, INC., 2000
- R. C. Eberhard, P. Simpson, R. Dobbins, 'Computional Intelligence PC Tools', Boston: Academic Press Professional, 1996
- A. Staiano. J. Tagliaferri, W. Pedrycz, 'Improving RBF networks performance in regression tasks by means of a supervised fuzzy clusering Automatic structure and parameter', Neurocomputing, Vol. 69, pp. 1570-1581, 2006 https://doi.org/10.1016/j.neucom.2005.06.014
- S.-K. Oh, W. Pedryz, B. - J, Park, 'Hybrid Identification of Fuzzy Rule-Based Models', International Journal of Intelligent System, Vol. 17, pp. 77-103, 2002 https://doi.org/10.1002/int.1004
- Y. Shi, R. C. Eberhart, 'Extracting Rules from Fuzzy Neural Network by Particle Swarm Optimization', Proceedings of the IEEE International Conference on Evolutionary Computation, 1998
- F. Behloul, B.P.F. Lelieveldt, A. Boudraa, J,H.C. Reiber, 'Optimal design of radial basis function neural networks for fuzzy-rule extraction in high dimensional data', The Journal of the Pattern Recognition Society, Vol. 35, pp. 659-675, 2002 https://doi.org/10.1016/S0031-3203(01)00033-4
- S.-K. Oh and W. Pedrycz, 'Identification of Fuzzy Systems by means of an Auto-Tuning Algorithm and Its Application to Nonlinear Systems', Fuzzy Sets and Syst., Vol. 115, No.2, pp. 205-230, 2000 https://doi.org/10.1016/S0165-0114(98)00174-2
- T. Tagaki and M. sugeno, 'Fuzzy identification of system and its applications to modeling and control', IEEE Trans. Syst. Cybem., Vol. SMC-15, No.1, pp. 116-132, 1985 https://doi.org/10.1109/TSMC.1985.6313399
- W. Pderyca and G. Vukovich, 'Granular neural networks', Neurocumputing, Vol. 36, pp. 205-224, 2001 https://doi.org/10.1016/S0925-2312(00)00342-8
- George E. Tsekouras, 'On the use of the weighted fuzzy c-means in fuzzy modeling', Advances in Engineering Software, Vol. 36, pp. 287-300, 2005 https://doi.org/10.1016/j.advengsoft.2004.12.001
- S. -K. Oh and W. Pedryz, 'Identification of Fuzzy Systems by means of an Auto-Tuning Algorithms and Its Application to Nonlinear Systems', Fuzzy Sets and Systs, Vol. 115, No.2, pp. 205-230, 2000 https://doi.org/10.1016/S0165-0114(98)00174-2
- B. - J, Park, W. Pedrycz and S. -K. Oh, 'Identification of fuzzy models with the aid of evolutionary data granulation', Vol. 148, No.5, pp. 406-418, 2001 https://doi.org/10.1049/ip-cta:20010677
- 오성권, 프로그램에 의한 컴퓨터지능(퍼지, 신경회로망 및 진화 알고리즘을 중심으로), 내하출판사, 2002