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Visualizing Multi-Variable Prediction Functions
by Segmented x-CPG’s
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Abstract
Machine learning methods such as support vector machines and random forests yield nonparametric pre-
diction functions of the form y = f(xi,...,x,). As a sequel to the previous article (Huh and Lee, 2008) for
visualizing nonparametric functions, I propose more sensible graphs for visualizing y = f(x,,..., x,) herein
which has two clear advantages over the previous simple graphs. New graphs will show a small number of pro-
totype curves of f(xi,...,X;1, X, Xju1 ..., X,), revealing statistically plausible portion over the interval of x;
which changes with (x;,...,x;\, x341,...,%,). To complement the visual display, matching importance mea-

sures for each of p predictor variables are produced. The proposed graphs and importance measures are validated
in simulated settings and demonstrated for an environmental study.

Keywords: Visualization of prediction functions, k-Means clustering, variable importance, support
vector machine, random forests, environmental data.

1. Introduction

Obtaining prediction functions of the form y = f(xy,..., x,) by building a supervised learning model
from a dataset of n observations of the response y and p predictors xy, ..., xp, we may ask ourselves
what the function f looks like? If the assumed model allows non-additivity in predictors, the vi-
sualization task is absolutely non-trivial for p > 3. In previous article (Huh and Lee, 2008), the
authors proposed to draw n conditional predictive graphs (CPG’s) for each of p predictors, where
each CPG(j), j = |, ..., p consists of trajectory curves

& f(xa,....t,...,xp)y, forall rin(a;, by, i=1,...,n

Supporting intervals (ay, by),...,(ap, by) for xy,...,x, can be determined either by principal re-
searchers or simply from the data, for instance

a;= i:nl‘dnnxij, b;= gllaxnx;j, forj=1,...,p.

As illustration of the method, I draw CPG’s of a support vector machine classifier for the iris
subset data(p = 4) in which the species are restricted to versicolor and virginica(n = 100). See
Figure 1 (reproduced from Figure 4.2 of Huh and Lee (2008)).

Each panel of CPG’s in Figure 1 contains n(= 100) curves over the same interval, ranging from
the minimum to the maximum of respective variables. But, it would be better if the supporting inter-
val (aj, b;) of x; varies depending on the conditioning point X(j) = (X1,..., Xj=1, Xj21, . - - » Xp)- Also,
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Figure 1: CPG’s of support vector machine classifier for iris data, Versicolor vs. Virginica

previous study (Huh and Lee, 2008) revealed that the plot of curves looks cumbersome when 7 is
somewhat large. The aim of this study is to develop an enhanced version of CPG’s for visualizing
y = f(x1,...,xp), produced by machine learners.

In Section 2 of this study, I propose more sensible graphs for visualizing y = f(xy,..., xp), herein
new graphs will show a batch of & trajectories

{(t9 f(xilv-“,t"'"xip))lte C(X],...,x]'_], xj+19~-'9xp)}

over chosen segments C(x1, ..., Xj-1, Xj+1 ..., Xp) for x;. To advantage of the new graphs, importance
measures for predictors matching to the graphs will be available. In Section 3, the proposed graphs
and importance measures are validated under the simulated settings. In Section 4, the proposed graphs
and importance measures are demonstrated for an environmental study of the ozone, modeled by the
support vector machine and the rain forests. Finally, in Section 5, I conclude the article with several
remarks.

2. k Prototype Curves on Plausible Intervals

The CPG(jj) contains n curves(j = 1,..., p), one for each conditioning variate X;; = (xi1, ..., X j-1,
Xij+1---» Xip), i = 1,...,n. Even for moderately large n such as 400, the CPG’s are almost darkened.
To avoid such problematics, one may plot a fraction of curves (as illustrated in Figure 3.2 of the
previous study). Another alternative is to use a manageable number of prototype conditioning variates
for each j = 1,..., p. 1 will pursue the latter approach employing k-means clustering to reduce the
number of curves. K-means clustering is regarded as one of the standard methods for selection of
prototypes (Hastie et al., 2001). '
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Figure 2: k-CPG’s of SVM classifier for iris subset data, Versicolor vs. Virginica

k-CPG’s: The First Proposal

1) Foreach j=1,..., p, reduce n conditioning variates

Xi(jhy = (xilwusxi,j—l’ Xg,j+1,~--,xip), i=1,...,n

to k prototype conditioning variates by k-means clustering which yields
0 _ {0 0 0 0 -
Xy = (x”,...,xg‘j_l, xI,jH,...,x,p), [=1,...,k
2) Plot trajectory curves

0 0 0 0 . : =
(t, f(.x”,...,x,’j_l, t, xl,jﬂ,‘..,x,p)), forall tin(a;, b)), I=1,...,k

for the CPG()), j=1,...,p.

Figure 2 shows k-CPG’s of support vector machine (SVM) classifier for the subset of iris data.
The number of clusters k is set to 4. One may see that the curves are more or less flat as functions
of sepal.length and sepal.width, while the curves for petal.length and petal.width are
clearly monotonically decreasing.

Even though k-CPG’s are successful in summarizing »n functions into k prototypes by k-means
clustering, still they show the whole curves simply not taking into account the conditioning variates.
Hence I devise one more procedure for crafting the curves.

Note that the batch of realized x; values of which the observation unit belongs to specific cluster
produces an plausible interval for the predictor. For instance, the k-means clustering of the iris
subset data without the first variable sepal.length partitions the data set into groups of 22, 21, 31,
26 observations, among which sepal.length ranges over (4.9, 6.3), (6.2, 7.9), (5.4, 7.0}, (5.6, 7.7).
Similarly, one can obtain the plausible intervals for the other three variables by groups. See the left
upper panel of Figure 3.
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Figure 3: Boxplots for four variables of iris subset data by k-means clusters
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Figure 4: Segmented k-CPG’s of SVM classifier for iris subset data, Versicolor vs. Virginica

Segmented k-CPG’s: The Second Proposal

Draw the traces of the k-CPG’s only over corresponding plausible intervals (ay), bg.l) ), = 1,....k
forx;(j=1,...,p), where

! - )
a? = min x;; and pY = max x;.
J i€cluster ! J i € cluster [

Thus, the segmented k-CPG’s of SVM classifier for the iris subset data will differ from the
unsegmented k-CPG’s of Figure 2 except supporting intervals. Figure 4 shows four panels of the
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Figure 5: Segmented k-CPG’s of RF clasifier for iris subset data, Versicolor vs. Virginica

segmented k-CPG’s of SVM clasifier for the iris subset data. Figure 4 shows the same curves as
those in Figure 2 on exposed portions.

One benefit of the segmented k-CPG’s such as Figure 4 is the delivery of input variable importance
measures and relative importance measures, that can be defined as

&
N ] 0 0y _ 0 0
Imp(x;) = ; " a(}r’tzi);wf(x“, NN A .,x(p) a{/)<l<b®f (x“, N R T
= T i
Imp(x;
Relative.Imp(x;) = p—p(L - 100(%).
Z Imp(x;)
=1

Relative importance measures of SVM clasifier for the iris subset data are 4.2%, 20.1%, 41.9%,
33.8% respectively for sepal.length, sepal.width, petal.length, petal.width. Hence we
may conclude that petal.length and petal.width are two major predictors classifying Versicolor
vs.Virginica.

So far, I have demonstrated the proposed method with a prediction function produced by a support
vector machine (SVM). Of course, the generality of the method can be extended to any prediction
function such as random forests (RF) model (Breiman, 2001). Figure 5 shows segmented k-CPG’s
of RF classifier for the iris subset data. Relative importance measures of RF classifier for the iris
subset data are 3.9%, 6.1%, 44.6%, 45.4%. Figure 4 and Figure 5 share many common features.

3. Simulation Study

To see how the proposed methods work, a Monte-Carlo study is designed:

D (X1, X5, X3, X4)'s are generated n times independently from a multivariate normal distribution
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Figure 6: Segmented k-CPG'’s for the simulation Cases (2o, 10) and (Zo, 100)

with zero means and the covariance matrix Xo(and ).
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2) Foreach (X, X,, X3, Xy), Y is generated according to
Y = 4X, 43X +2X; + Xy +e, €~N(0,0.57).

Number of observations » is set to 1,000. The number of clusters k is set to 10(and 100). The
prediction model is obtained from linear regression. Each simulation case will be referred by
Case (I, k). '

Figure 6(a) and (b) are segmented k-CPG’s, respectively, for Cases (Zg, 10) and (Zo, 100). All the
graphs are right in the sense that the slopes of the panels are approximately 4, 3, 2, 1 as postulated.
Also relative importance measures of predictors are approximately proportional to their coefficients
of the underlying model:

Case (£9, 10): 38.9%, 31.4%, 19.6%, 10.0%.
Case (Zp, 100) : 40.7%, 30.7%, 18.7%, 9.9%.

Figure 7(a) and (b) are segmented k-CPG’s, respectively, for Cases (X, 10) and (Z;, 100). Four
panels of the graphs show regression slopes near to 4, 3, 2, 1. Relative importance measures for input
variables are, however, somewhat different. They turn out to be ‘

Case(Zg, 10): 43.8%, 27.5%, 19.6%, 9.1%.
Case (Zg, 100) : 45.9%, 26.7%, 18.7%, 8.7%.



Visualizing Multi-Variable Prediction Functions by Segmented &-CPG’s 191

& R & &
= @ 2 2
%, - o P £ B
- = 2 2
4 2 ¢} 2 & -4 2 ] 2 4
x1 %2 xt x2
B~ B & &
2 = = e
Foll -1 E -1 Ell = Eal |
2 = e 2
=) o o )
g.‘ ¥ ¥ T 7 T REi T § i ﬁ il R ¥ T T i T
4 2 u 2 4 4 e a 2 4 -4 2 U 2 4 4 b} 2 &
%] Pr %3 x4
(a) Case (%1, 10) (b) Case (31, 100}

Figure 7: Segmented k-CPG'’s for the simulation Cases (£, 10) and (£, 100)

But this disparity is understandable, since partial dispersions of each variable given the others are not
equal for the cases of X,. The partial standard deviations of X;, X2, X3, X4 given the others are 1.00,
0.82, 0.82, 0.82, respectively. Thus, theoretic relative importance for X is

4 %1.00
4%100+3%082+2%082+2%0.82

In that way, theoretic relative importances for X3, X3, X4 are 27.5%, 18.4%, 9.2%. Hence, empirical
results from simulated datasets are congruent to these theoretical numbers.

=44.9%.

4. A Case of Environmental Study of Ozone

The case to be considered is the ozone data of Breiman and Friedman (1985). There are 330 ob-
servations of the response, ground level ozone (as a pollutant) in Los Angeles and nine explanatory
variables: vh, the altitude at which the pressure is 500 millibars; wind, the wind speed(mph); hum,
the humidity(%); temp, the temperature(F); ibh, the temperature inversion base height(feet); dpg, the
pressure gradient(mmHg); ibt, the inversion base temperature(degrees F); vis, the visibility(miles);
and doy, the day of the year,

Now, log(ozone) is modeled as a function of temp, ibh, dpg, vis and doy by support vector
machine and random forests, of which the segmented k-CPG’s are shown respectively in Figure 8 and
Figure 9, with k& = 12.

One can see that temp is the most important predictor in both fitted models. Such visual findings
can be verified by numerical importance measures:

SVM: 32.2%, 149%, 18.2%, 13.6%, 21.0%.
RF: 36.5%, 19.0%, 15.8%, 8.2%, 20.6%.
In details, however, there are several differences between two regression models: doy and dpg

are secondly important in SVM, while doy is in the second and ibh is in the third place in impor-
tance. Also, functional patterns of doy are different: In SVM the log(ozone) is peaked around doy
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Figure 8: Segmented k-CPG’s of SVM regression for LA ozone data
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Figure 9: Segmented k-CPG'’s of RF regression for LA ozone data

= 150~180, while log(ozone) is almost flat for doy between 100 and 300. Breiman and Friedman
(1985) discovered basically similar things, but they claimed the peak is at doy = 120, one or two
months earlier than the finding of this study.

One may wonder how the graphs and measures change with different choice of &, the number of

clusters. As experiment, set k = 6 and I obtained the very similar graphs (which are not shown here)
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and measures as follows:

SVM: 32.1%, 14.5%, 194%, 13.0%, 20.9%.
RF: 362%, 22.0%, 14.3%, 8.2%, 19.2%.

Furthermore, I tried k = 3 and obtained the very similar results as follows:

SVM: 324%, 13.7%, 192%, 12.7%, 22.0%.
RFE: 36.8%, 21.8%, 143%, 8.2%, 18.9%.

5. Concluding Remarks

In k-means clustering, it is well known that the determination of k, number of clusters, is an intricate
task for data analysts. For the purpose of visualizing multi-variable functions, however, I think it is
not that serious matter as verified in simulated settings of Section 3 and demonstrated in a real data
case of Section 4. One may simply try various k’s and observe the CPG’s.

In the random forests (RF), variable importance measures are readily available which is defined
by the magnitude of decrease in accuracy by randomly permuting data values of respective predic-
tor (Breiman, 2001). Thus, RF’s importance measure addresses different concept and does not take
into account the effect of the other variables. Recently, there appeared an improvement (Strobl er
al., 2008). Compared to Breiman’s measure of variable importance, the proposed method using seg-
mented k-CPG’s addresses directly the fitted prediction function,
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