DOI QR코드

DOI QR Code

Assessing the Accuracy of Outlier Tests in Nonlinear Regression

  • 발행 : 2009.01.31

초록

Given the specific mean shift outlier model, the standard approaches to obtaining test statistics for outliers are discussed. Accuracy of outlier tests is investigated using subset curvatures. These subset curvatures appear to be reliable indicators of the adequacy of the linearization based test. Also, we consider obtaining graphical summaries of uncertainty in estimating parameters through confidence curves. The results are applied to the problem of assessing the accuracy of outlier tests.

키워드

참고문헌

  1. Bates, D. M. and Watts, D. G. (1980). Relative curvature measures of nonlinearity (with discussion), Journal of the Royal Statistical Society, Series B, 42, 1-25
  2. Bates, D. M. and Watts, D. G. (1981). Parameter transformations for improved approximate confi-dence regions in nonlinear least squares, The Annals of Statistics, 9, 1152-1167 https://doi.org/10.1214/aos/1176345633
  3. Bales, D. M. and Watts, D. G. (1988). Nonlinear Regression Analysis and Its Applications, John Wiley & Sons, New York
  4. Beale, E. M. L. (1960). Confidence regions in nonlinear estimation (with discussion), Journal of the Royal Statistical Society, Series, B, 22, 41-76
  5. Cook, R. D. and Goldberg, M. L. (1986). Curvatures for parameter subsets in nonlinear regression, The Annals of Statistics, 14, 1399-1418 https://doi.org/10.1214/aos/1176350166
  6. Cook, R. D. and Weisberg, S. (1990). Confidence curves in nonlinear regression, Journal of the American Statistical Association, 85, 544-551 https://doi.org/10.2307/2289796
  7. Kahng, M. W. (1995). Testing outliers in nonlinear regression, Journal of the Korean Statistical Society, 24, 419-437
  8. Kahng, M. W. (2003). Confidence curves for a function of parameters in nonlinear regression, Journal of the Korean Statistical Society, 32, 1-10
  9. Neyman, J. and Pearson, E. S. (1928). On the use and interpretation of certain test criteria for purposes of statistical inference, Biometrika, 20A, 175-240 and 263-294 https://doi.org/10.1093/biomet/20A.3-4.263
  10. Rao, C. R. (1947). Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation, Proceedings of the Cambridge Philosophical Society, 44,50-57 https://doi.org/10.1017/S0305004100023987
  11. Ratkowsky, D. A. (1983). Nonlinear Regression Modeling: A Unified Practical Approach, Marcel Dekker, New York
  12. Silvey, S. D. (1959). The Lagrangian multiplier test, The Annals of Mathematical Statistics, 30, 389-407 https://doi.org/10.1214/aoms/1177706259
  13. Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large, Transactions of the American Mathematical Society, 54, 426-482 https://doi.org/10.2307/1990256

피인용 문헌

  1. A Statistical Analysis on Temperature Change and Climate Variability in Korea vol.18, pp.1, 2011, https://doi.org/10.5351/CKSS.2011.18.1.001
  2. Comparison of Forecasting Performance in Multivariate Nonstationary Seasonal Time Series Models vol.18, pp.1, 2011, https://doi.org/10.5351/CKSS.2011.18.1.013
  3. Accuracy of Multiple Outlier Tests in Nonlinear Regression vol.18, pp.1, 2011, https://doi.org/10.5351/CKSS.2011.18.1.131