DOI QR코드

DOI QR Code

OFDMA 시스템의 ARQ 기반 멀티캐스트 방법

ARQ-based Multicast for OFDMA Systems

  • 김성원 (영남대학교 전자정보공학부)
  • 발행 : 2009.01.30

초록

한 노드에서 다수의 노드로 데이터를 전달하는 one-hop 통신에 사용되는 매체접속제어(MAC)는 멀티캐스트 기반의 데이터 통신을 사용하는 것이 매우 효율적이다. 유니캐스트와 달리 멀티캐스트에서는 모든 노드들과의 통신에서 우수한 품질을 얻기 위해서는 여러 노드들과의 서로 다른 무선 채널환경과 노드 이동성에 따른 무전 채널환경 변화에 대응할 수 있어야 한다. 하지만, IEEE 802.11에서는 다수개의 노드들과 RTS, CTS, ACK을 교환하는 방법이 정의되어 있지 않아서 신뢰성 있는 멀티캐스트를 지원하지 않고 있다. 이러한 문제를 해결하기 위해서 몇 가지 MAC 계층 프로토콜들이 제안되었다. 하지만, 신뢰성 있는 멀티 캐스트를 구현하기 위해서는 추가적인 오버헤드가 필요하며, 이 오버헤드로 인해서 시스템 성능이 저하하게 된다. 본 논문에서는 OFDMA 시스템에서 신뢰성 있는 멀티 캐스트를 구현하기 위해 필요한 오버헤드를 줄이기 위하여 계층통합적 (cross-layer) 설계기법을 제안한다. 제안된 오버헤드와 시스템 성능간의 관계를 분석하는 방법도 제안한다.

Multicast-based data communication is an efficient communication scheme in wireless networks where the Media Access Control (MAC) layer is based on one-hop broadcast from one source to multiple receivers. Compared with unicast, multicast over wireless channel should handle varying channel conditions of multiple users and user mobility to achieve good quality for all users. However, IEEE 802.11 does not support reliable multicast due to its inability to exchange RTS/CTS and ACK with multiple recipients. Thus, several MAC layer protocols have been proposed to provide reliable multicast. For the reliable multicast, an additional overhead is introduced and it degrades the system performance. In this paper, we propose a cross-layer design to reduce the control overhead for reliable multicast in OFDMA systems. We present an analytical formulation of the system throughput associated with the overhead.

키워드

참고문헌

  1. J.-S. Park, M. Gerla, D. S. Lun, Y. Yi, and M. Medard, "Codecast: A network-coding-based ad hoc multicast protocol," IEEE Wireless Commun. Mag., vol. 13, no. 5, pp. 76–81, Oct. 2006 https://doi.org/10.1109/WC-M.2006.250362
  2. U. T. Nguyen and J. Xu, “Multicast routing in wireless mesh networks: Minimum cost trees or shortest path trees?” IEEE Commun. Mag., vol. 45, no. 11, pp. 72–77, Nov. 2007 https://doi.org/10.1109/MCOM.2007.4378324
  3. D.-N. Yang and M.-S. Chen, "Efficient resource allocation for wireless multicast," IEEE Trans. Mobile Comput., vol. 7, no. 4, pp. 387–400, Apr. 2008 https://doi.org/10.1109/TMC.2007.70739
  4. IEEE Std 802.11: 1999(E), Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Aug. 1999
  5. C.-W. Bao and W. Liao, "Performance analysis of reliable MAC-layer multicast for IEEE 802.11 wireless LANs," in Proc. IEEE ICC 2005, May 2005, pp. 1378–1382
  6. H. Gossain, N. Nandiraju, K. Anand, and D. P. Agrawal, "Supporting MAC layer multicast in IEEE 802.11 based MANETs: Issues and solutions," in Proc. IEEE LCN 2004, Nov. 2004, pp. 172–179
  7. D. Towsley, J. kurose, and S. Pingali, "A comparison of sender-initiated and receiver-initiated reliable multicast protocols,"IEEE J. Select. Areas Commun., vol. 15, no. 3, pp. 398–406, Apr. 1997 https://doi.org/10.1109/49.564137
  8. J. Kuri and S. K. Kasera, "Reliable multicast in multi-access wireless LANs, "Wireless Networks, vol. 7, no. 4, pp. 359–369, Aug. 2001 https://doi.org/10.1023/A:1016631911947
  9. Q. Du and X. Zhang, "Cross-layer resource- consumption optimization for mobile multicast in wireless networks,"in Proc. IEEE WoWMoM 2006, Jun. 2006, pp. 368–376
  10. L. Lazos and R. Poovendran, "Cross-layer design for energy-efficient secure multicast communications in ad hoc networks," in Proc. IEEE ICC 2004, Jun. 2004, pp. 47–54
  11. A. Mohamed and H. Alnuweiri, “Cross-layer optimization framework for rate allocation in wireless multicast,” in Proc. IEEE MASS 2006, Oct. 2006, pp. 1–10
  12. K. Tang and M. Garcia, "MAC reliable broadcast in ad hoc networks," in Proc. IEEE MILCOM 2001, Oct. 2001, pp. 1008–1013
  13. M. T. Sun, L. Huang, A. Arora, and T. H. Lai, "Reliable MAC layer multicast in IEEE 802.11 wireless networks," in Proc. IEEE ICPP 2002, Aug. 2002, pp. 527–536
  14. Z. Cao, U. Tureli, and Y.-D. Yao, "Deterministic multiuser carrierfrequency offset estimation for interleaved OFDMA uplink," IEEE Trans. Commun., vol. 52, no. 9, pp. 1585–1594, Sep. 2004 https://doi.org/10.1109/TCOMM.2004.833183
  15. S. Kaiser and W. A. Krzymien, "Performance effects of the uplink asynchronism in a spread spectrum multicarrier multiple access system," Eur. Trans. Commun., vol. 10, no. 4, pp. 399–406, 1999
  16. S. Kapoor, D. J. Marchok, and Y. F. Huang, "Adaptive interference suppression in multiuser wireless OFDM system using antenna arrays,"IEEE Trans. Signal Processing, vol. 47, pp. 3381–3391, Dec. 1999 https://doi.org/10.1109/78.806081
  17. G. Bianchi, "Performance analysis of the IEEE 802.11 distributed coordination function," IEEE J. Select. Areas Commun., vol. 18, no. 3, pp. 535–547, Mar. 2000 https://doi.org/10.1109/49.840210
  18. S. W. Kim, B. Kim, and Y. Fang, "Downlink and uplink resource allocation in IEEE 802.11 wireless LANs," IEEE Trans. Veh. Technol., vol. 54, no. 1, pp. 320–327, Jan. 2005 https://doi.org/10.1109/TVT.2004.838887
  19. T.-C. Hou, L.-F. Tsao, and H.-C. Liu, "Analyzing the throughput of IEEE 802.11 DCF scheme with hidden nodes," in Proc. IEEE VTC 2003-Fall, Oct. 2003, pp. 2870–2874
  20. IEEE Std 802.11a-1999, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-speed Physical Layer in the 5 GHz Band, Sep. 1999