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STABILITY OF THE CAUCHY FUNCTIONAL
EQUATION IN BANACH ALGEBRAS

JUNG RYE LEE* AND CHOONKIL PARK

ABSTRACT. Using the fixed point method, we prove the generalized
Hyers-Ulam stability of homomorphisms in Banach algebras and of
derivations on Banach algebras for the 3-variable Cauchy functional
equation.

1. Introduction and preliminaries

The stability problem of functional equations originated from a ques-
tion of Ulam [40] concerning the stability of group homomorphisms. Hy-
ers [9] gave a first affirmative partial answer to the question of Ulam for
Banach spaces. Th.M. Rassias [30] provided a generalization of Hyers’
Theorem which allows the Cauchy difference to be unbounded.

THEOREM 1.1. (Th. M. Rassias). Let f : E — E’' be a mapping
from a normed vector space E into a Banach space E' subject to the
inequality

(1.1) 1z +y) = f) = ) < e(ll=]” + [ly]")

for all x,y € E, where € and p are constants with e > 0 and p < 1. Then
the limit

L(z) = lim J(2z)

n—oo on
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exists for all x € E and L : E — FE’ is the unique additive mapping
which satisfies

I1F@) - L@ < 5oy

for all x € E. Also, if for each x € E the function f(tx) is continuous in
t € R, then L is R-linear.

(kg

The above inequality (1.1) that was introduced for the first time by
Th.M. Rassias [30] for the proof of the stability of the linear mapping
between Banach spaces has provided a lot of influence in the develop-
ment of what is now known as a generalized Hyers-Ulam stability or as
Hyers-Ulam-Rassias stability of functional equations. Beginning around
the year 1980 the topic of approximate homomorphisms, or the stability
of the equation of homomorphism, was studied by a number of math-
ematicians. Gavruta [8] extended the Hyers-Ulam stability by proving
the following theorem in the spirit of Th.M. Rassias’ approach.

THEOREM 1.2. [8] Let f : E — E’ be a mapping for which there
exists a function ¢ : E x E' — [0, 00) such that

Plr,y): = Y 2792, 2y) < oo,
=0

If(z+y) = flz) = fWll < elzy)

for allz,y € E. Then there exists a unique additive mappingT : E — E’
such that

1.
If(z) = T(@)l| < 5¢(z,2)
forallz € E.

THEOREM 1.3. [29] Let X be a real normed linear space and Y a
real complete normed linear space. Assume that f : X — Y is an
approximately additive mapping for which there exist constants 8 > 0
and p € R —{1} such that f satisfies inequality

1£ (@ +y) — F() = Fu)] < 6-1lall5 - lyll?

for all x,y € X. Then there exists a unique additive mapping L : X — Y
satisfying

0
|20 — 2|

1f(z) = L(z)|| <

[l[”
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for all x € X. If, in addition, f : X — Y is a mapping such that the
transformation t — f(tx) is continuous in t € R for each fixed x € X,
then L is an R-linear mapping.

The functional equation

fle+y) + flo—y) =2f(x) +2f(y)

is called a quadratic functional equation. In particular, every solution of
the quadratic functional equation is said to be a quadratic function. A
generalized Hyers—Ulam stability problem for the quadratic functional
equation was proved by Skof [39] for mappings f : X — Y, where X is
a normed space and Y is a Banach space. Cholewa [5] noticed that the
theorem of Skof is still true if the relevant domain X is replaced by an
Abelian group. Czerwik [6] proved the generalized Hyers-Ulam stability
of the quadratic functional equation. The stability problems of several
functional equations have been extensively investigated by a number of
authors and there are many interesting results concerning this problem
(see [1], [2], [12], [14]-[27], [32]-[38]).

We recall a fundamental result in fixed point theory. The reader is
referred to the book of D.H. Hyers, G. Isac and Th.M. Rassias [10] for
an extensive account of fixed point theory with several applications.

Let X be a set. A function d : X x X — [0, 00| is called a generalized
metric on X if d satisfies

(1) d(x,y) = 0 if and only if z = y;

(2) d(z,y) = d(y,z) for all z,y € X;

(3) d(z,2) < d(z,y) +d(y,z) for all z,y,z € X.

THEOREM 1.4. [4, 7, 28] Let (X,d) be a complete generalized met-
ric space and let J : X — X be a strictly contractive mapping with
Lipschitz constant L. < 1. Then for each given element x € X, either

d(J"z, J"z) = 0o

for all nonnegative integers n or there exists a positive integer ngy such
that

(1) d(J"z, J" ) < oo, Vn > ny;
(2) the sequence {J"x} converges to a fixed point y* of J;

(3) y* is the unique fixed point of J in the set Y = {y € X |
d(J"w,y) < oo}

(4) d(y,y*) < T25d(y, Jy) for ally € Y.
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G. Isac and Th.M. Rassias [13] were the first to provide applications
of stability theory of functional equations for the proof of new fixed point
theorems with applications.

This paper is organized as follows: In Section 2, using the fixed point
method, we prove the generalized Hyers-Ulam stability of homomor-
phisms in Banach algebras for the 3-variable Cauchy functional equa-
tion.

In Section 3, using the fixed point method, we prove the generalized
Hyers-Ulam stability of derivations on Banach algebras for the 3-variable
Cauchy functional equation.

Throughout this paper, assume that A is a complex Banach algebra
with norm || - [[4 and that B is a complex Banach algebra with norm

-1l

2. Stability of homomorphisms in Banach algebras

For a given mapping f : A — B, we define

D, f(z,y,2) = pf(x+y+2)— f(px) = fluy) — f(pz)

forall pe T :={v € C:|v|=1} and all z,y,z € A.
Note that a C-linear mapping H : A — B is called a homomorphism
in Banach algebras if H satisfies H(zy) = H(x)H (y) for all z,y € A.
We prove the generalized Hyers-Ulam stability of homomorphisms in
Banach algebras for the functional equation D, f(x,y, z) = 0.

THEOREM 2.1. Let f : A — B be a mapping for which there exists a
function ¢ : A* — [0, 00) such that
(2:2) 1)~ F e < olorn0)

for all p € T and all x,y,z € A. If there exists an L < 1 such that
o(x,y,z) < 3Lp(%,4,2) for all x,y,z € A, then there exists a unique

31373
homomorphism H : A — B such that
1
(2.3 1£() ~ H@ls < 5= lw2,2)

for all x € A.
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Proof. Consider the set
X :={9g:A— B}
and introduce the generalized metric on X:
d(g,h) =inf{C € R, : ||g(x) — h(2)||p < Cp(z,x,x), Vre A}

It is easy to show that (X, d) is complete.
Now we consider the linear mapping J : X — X such that
1

Jg() = 39(32)

for all z € A.
By Theorem 3.1 of [3],

d(Jg, Jh) < Ld(g, h)
for all g, h € X.
Letting u =1 and y = z = z in (2.1), we get
(2.4) 1f(3z) = 3f(2)|s < olz,2,x)
for all z € A. So

1£(2) = 35 Ga)lls < Sl 2.2)

for all z € A. Hence d(f,Jf) < 3.

By Theorem 1.4, there exists a mapping H : A — B such that

(1) H is a fixed point of J, i.e.,
(2.5) H(3z) =3H(x)
for all x € A. The mapping H is a unique fixed point of J in the set

YV ={geX:d(f g) <oo}.
This implies that H is a unique mapping satisfying (2.5) such that there
exists C' € (0, 00) satisfying
|H () - f(2)]l5 < Cplz, 2, 2)

for all z € A.
(2) d(J"f,H) — 0 as n — oo. This implies the equality

(2.6) lim &:x) = H(x)

n—oo 3

for all x € A.
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(3) d(f, H) < £2:d(f, J f), which implies the inequality

1
d(f,H) < .
() < 5o
This implies that the inequality (2.3) holds.
It follows from (2.1) and (2.6) that

VH(z+y+2) — H(z) — Hy) - H)|5
— lim /3" +y + ) — F(3") — [(3") — F(3"2)5

n—oo 3N
) 1
< lim 3—ng0(3”x,3”y,3“z) =0
for all z,y,z € A. So
(2.7) Hx+y+2)=H(z)+ H(y) + H(2)

for all z,y,z € A. Letting z = 0 in (2.7), we get
H(x+y) = H(x)+ H(y) + H(0) = H(x) + H(y)
for all z,y € A.
Letting y = z = x in (2.1), we get
||,uf(3x) - f(,qu)H < gO(:L’,.I,JZ)
for all u € T! and all z € A. By a similar method to above, we get
wH(3x) = H(3px)

for all u € T! and all # € A. Thus one can show that the mapping
H : A — B is C-linear.
It follows from (2.2) that

|H(ay) - H@H@)s = lm —[f(@zy) — FG"2)f3")]5

n—oo 9N

1
< lim —¢(3"z,3"y,0) =0

n—oo 3"
for all x,y € A. So
H(xy) = H(x)H(y)
for all x,y € A.
Thus H : A — B is a homomorphism satisfying (2.3), as desired. [J
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COROLLARY 2.2. Let 0 < r < 1 and € be nonnegative real numbers,
and let f: A — B be a mapping such that
(2.8) IDuf(zy, 2)lls < Ol + [lylla + [1z1%),
2.9 flzy) = f@)fWls < Olxlly+ llylla)

for all p € Tt and all z,y,z € A. Then there exists a unique homomor-
phism H : A — B such that

(@)~ Hz)s < =

3—=3

1%
for all x € A.
Proof. The proof follows from Theorem 2.1 by taking
p(,y,2) = 0|zl + llylla +[12)
for all z,y,2z € A. Then L = 3! and we get the desired result. O]

THEOREM 2.3. Let f : A — B be a mapping for which there exists a
function ¢ : A*> — [0, 00) satisfying (2.2). If there exists an L < 1 such
that p(z,y,z) < %L(p(?)x,?)y,?)z) for all x,y,z € A, then there exists a
unique homomorphism H : A — B such that

(2.10) [f(z) — H(z)|ls <
for all x € A.

3 _ 3LSD($7CC7 x)

Proof. We consider the linear mapping J : X — X such that

Tg(e) = 39(3)

for all x € A.
It follows from (2.4) that

1(x) = 3F(lls < 0(5. 5.

for all z € A. Hence d(f,Jf) < £.
By Theorem 1.4, there exists a mapping H : A — B such that
(1) H is a fixed point of J, i.e.,

(2.11) H(3z) = 3H(x)
for all z € A. The mapping H is a unique fixed point of J in the set
Y ={geX:d(f g) <oo}.

L
) < g(ﬂ(&?,l’,%)

Wiy
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This implies that H is a unique mapping satisfying (2.11) such that there
exists C' € (0, 00) satisfying
[H(z) = f(z)ls < Co(z, 2, 1)
for all z € A.
(2) d(J"f,H) — 0 as n — oo. This implies the equality

Jim 3 7(50) = H(x)

for all z € A.
(3) d(f, H) < 2£d(f, Jf), which implies the inequality
L
d(f,H) <
(F, H) < 3—3L’
which implies that the inequality (2.10) holds.
The rest of the proof is similar to the proof of Theorem 2.1. n

COROLLARY 2.4. Let r > 2 and 6 be nonnegative real numbers, and
let f : A — B be a mapping satisfying (2.8) and (2.9). Then there exists
a unique homomorphism H : A — B such that

30
I£() = H(x) s < 57

1%
for all x € A.
Proof. The proof follows from Theorem 2.3 by taking

e(@,y,z) = O(l|lz|s + [lylla + [121%)
for all z,y,2z € A. Then L = 3'™" and we get the desired result. O

3. Stability of derivations on Banach algebras

Note that a C-linear mapping § : A — A is called a derivation on A
if 0 satisfies 6(xy) = d(z)y + xd(y) for all z,y € A.

We prove the generalized Hyers-Ulam stability of derivations on Ba-
nach algebras for the functional equation D, f(x,y,z) = 0.

THEOREM 3.1. Let f: A — A be a mapping for which there exists a
function ¢ : A*> — [0, 00) such that

(3.1) ID,.f(x,y,2)

||A ( y,Z),
(3.2) 1 (zy) — f(x)y — 2 f(y)lla

o(z,
¢(z,y,0)
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for all p € T and all x,y,z € A. If there exists an L < 1 such that

o(r,y,2) < 3Lp(3,%,3) for all v € A. Then there exists a unique

derivation § : A — A such that

. — <
(33 1£) = 6(@)lla < 5=l 2,
for all x € A.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists
a unique C-linear mapping § : A — A satisfying (3.3). The mapping
0:A— Ais given by

d(z) = lim CED)

n—00 3n

for all z € A.
It follows from (3.2) that

16(zy) — 0(2)y — 26(y)|| 4
= lim iu F(9"zy) — f(3"x) - 3"y — 3"z f(3"y)]|a

n—oo 9n
1 1
< lim 9—n<p(3”x,3"y,0) < lim 3—ngo(3”x,3"y,0) =0

for all x,y € A. So
o(zy) = 0(x)y + xd(y)
for all z,y € A. Thus § : A — A is a derivation satisfying (3.3). m

COROLLARY 3.2. Let 0 < r < 1 and 6 be nonnegative real numbers,
and let f: A — A be a mapping such that

(3.4) I1Duf (@9, 2)la < Ozl + [yl + [1211),
(3.5) | f(zy) = f@)y —zfWlla < OUlls+ llylla)

for all p € T! and all x,y,z € A. Then there exists a unique derivation
0: A — A such that

If () = d(z)[[a <

for all x € A.
Proof. The proof follows from Theorem 3.1 by taking

p(,y,z) == Ol=lla + lylla + ll211%)
for all z,y,2z € A. Then L = 3" and we get the desired result. O]
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THEOREM 3.3. Let f : A — A be a mapping for which there exists
a function ¢ : A*> — [0,00) satisfying (3.1) and (3.2). If there exists
an L < 1 such that p(z,y,z) < %ch(?)x,?)y,?)z) for all x,y,z € A, then
there exists a unique derivation ¢ : A — A such that

[f(x) = o(z)]|a <

for all x € A.
Proof. The proof is similar to the proofs of Theorems 2.3 and 3.1. [

COROLLARY 3.4. Let r > 2 and 6 be nonnegative real numbers, and
let f: A — A be a mapping satistying (3.4) and (3.5). Then there exists
a unique derivation d : A — A such that

30
I£(@) = 0(@)lla < 5

]I
for all x € A.
Proof. The proof follows from Theorem 3.3 by taking

p(,y,z) = Ol=lla + lylla + ll211%)
for all z,y,2z € A. Then L = 31" and we get the desired result. O]
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