Effect of Formation of Segmented Fractures Induced by Fluid Injection on Major Design Parameters

수압파쇄균열의 분할생성 시 주요 설계변수에 대한 영향

  • Received : 2009.08.17
  • Accepted : 2009.09.15
  • Published : 2009.10.01

Abstract

Rock fracturing technique through fluid injection into the wellbore has been widely used to extract geothermal heat and to enhance oil and gas production. Single fracture formation is ideal for the production. However, it is very difficult to form single fracture formation. Instead, the formation of segmented fracture is a common phenomenon. Therefore, design parameters are expected to be different from those of single fracture because of mechanical interaction between segmented fractures. In this paper, design parameters such as length, aperture, and net pressure are evaluated by using model of segmented fracture in which numerical technique is incorporated to consider mechanical interaction between segments. Results show that the existence of fracture segmentation affects design parameters in fracturing treatment in rock by fluid injection.

유체를 주입하여 암반을 파쇄하는 기술은 지열이나 석유 및 가스 등을 추출하는데 널리 사용되고 있는 방법이다. 본 기술을 적용 시 단일균열이 형성되면 이러한 에너지를 추출하는데 가장 이상적이다. 그러나 이러한 단일균열의 형성은 매우 드문 현상이며 분할된 형태의 균열생성이 흔한 현상이다. 이에 균열간 기계적 상호작용의 영향으로 설계변수에서도 단일균열을 가정하고 적용되었던 값과 차이를 보일 것으로 예상된다. 본 연구에서는 균열이 분할 생성되었을 경우 기계적인 상호작용을 고려할 수 있는 수치해석기법을 기존의 개발된 모델과 연계하여 설계변수인 길이, 균열폭, 그리고 압력을 계산하였다. 그 결과 균열의 형성은 이렇게 유체를 주입하여 암반을 파쇄 시 사용되는 설계변수에 상당한 영향을 끼치는 것으로 나타났다.

Keywords

References

  1. Davidson, B.M., Saunders, B.F., Robinson, B.M., and Holditch, S.A. (1993), Analysis of Abnormally High Fracture Treating Pressures Caused by Complex Fracture Growth, SPE 26154.
  2. Economides, M.J. and Nolte, K.G. (2000), Reservoir Stimulation, 3rd Edition, John Wiley & Sons, LTD., pp. 856.
  3. Germanovich, L. N., Astakhov, D.K., Shlyapobersky, J., Mayerhofer, M.J., Dupont, C. and Ring, L.M. (1998), Modeling Multisegmented Hydraulic Fracture in Two Extreme Cases: No Leakoff and Dominating Leakoff, International Journal of Rock Mechanics and Mining Sciences, Vol. 35, No. 4-5.
  4. Kemp, L.F. (1990), Study of Nordgren's Equation of Hydraulic Fracturing, SPE Production Engineering, pp. 311-314.
  5. Lehman, L.V. and Brumley, J.L. (1997), Etiology of Multiple Fractures, SPE 37406.
  6. Mahrer, K.D. (1999), A Review and Perspective on Far-field Hydraulic Fracture Geometry Studies, Journal of Petroleum Science and Engineering, Vol. 24, pp. 13-28. https://doi.org/10.1016/S0920-4105(99)00020-0
  7. Medlin, W.L. and Fitch, J.L. (1983), Abnormal Treating Pressures in MHF Treatments, SPE 12108.
  8. Nordgren, R.P. (1972), Propagation of a Vertical Hydraulic Fracture, Society of Petroleum Engineers Journal, pp. 306-314.
  9. Sato, K., Wright, C.A. and Makoto, I. (1999), Post-frac Analyses Indicating Multiple Fractures Created in a Volcanic Formation, SPE Production & Facilities, Vol. 14, No. 4, pp. 284-291. https://doi.org/10.2118/59097-PA
  10. Sim, Y.J. and Kim, H.T. (2005), A Study on the Interaction of Segmented Hydraulic Fractures, Journal of the Korean Geotechnical Society, KGS, Vol. 21, No. 9, pp. 45-52.
  11. Sim, Y.J., Kim, H.T., and Germanovich, L.N. (2006), Study on the Fracture Deformation Characteristics in Rock by Hydraulic Fracturing, Journal of the Korean Geo-Environmental Society, KGES, Vol. 10, No. 4, pp. 43-53.
  12. Stadulis, J.M. (1995), Development of a Completion Design to Control Screenouts Caused by Multiple Near-wellbore Fractures, SPE 29549.