DOI QR코드

DOI QR Code

An Association of Changed Levels of Inflammatory Markers with Hematological Factors during One-time Aerobic Exercise in Twenty-aged Young Men

20대 젊은이들에 있어 1회성 유산소운동 시 염증 표지자와 혈액변인들 간의 상관관계

  • Hyun, Kyung-Yae (Department of Biomedical Laboratory of Science, College of Smart Foods and Drugs, Inje University)
  • 현경예 (인제대학교 의생명공학부)
  • Published : 2009.11.30

Abstract

This study was carried out on thirty men to define the association of inflammatory markers with physiological factors on one-time aerobic exercise (for 15 min. Post-exercise interleukin-6 (IL-6), mean corpuscular hemoglobin concentration (MCHC), heart rate (HR), systolic blood pressure (SBP), and pulsatility and resistance index of middle cerebral artery (PI and RI, respectively) levels were elevated compared to those measured pre-exercise. Total leukocyte and platelet counts, high-sensitivity C-reactive protein (hs-CRP), free radical (FR), and low density lipoprotein cholesterol (LDL) levels tended to decrease after exercise. Pre-exercise IL-6 levels were positively correlated with pre-exercise SBP levels, while post-exercise IL-6 level was positively correlated with post-exercise PI and RI levels. Post-exercise, hs-CRP levels were negatively related to SBP and HR. Pre-exercise, FR levels were positively associated to SBP, DBP, and HR. Post-exercise FR levels were negatively related to the post-exercise blood flow velocity in middle cerebral artery. Pre-exercise erythrocyte indices (RBC, MCV, MCH, and MCHC levels) were in inverse proportion to pre-exercise IL-6 levels. Post-exercise FR levels were inversely related to post-exercise total leukocyte, lymphocyte, monocyte, and MCH levels. Pre-exercise $Mg^{++}$ levels were in inverse proportion to pre-exercise IL-6, hs-CRP, or FR levels. These findings suggest that one-time aerobic exercise offers a significant relationship between inflammatory markers and some biochemical markers or electrolytes. Further studies need to be carried out for investigation of differences between genders or age groups following one-time or regular aerobic exercise.

15분간의 1회성 유산소 운동 시 염증성 표지자들의 변화와 여러 생리학적 변수들 간의 상관관계를 밝히기 위해 30명의 젊은 남성을 대상으로 연구를 실시하였다. 운동 후 인터루킨-6(IL-6) 농도, 평균적혈구 혈색소 농도, 심박수, 수축기혈압, 중대뇌동맥 박동지수(PI) 및 저항지수(RI)는 운동 전 보다 증가하였다. 총백혈구수, 혈소판 수, 저밀도콜레스테롤은 운동후 약간 감소되는 경향이 있었다. 운동 전 IL-6농도와 수축기 혈압 간에 양의 상관성이, 운동 후 IL-6농도와 PI 및 RI 사이에 각각 양의 상관관계를 보였다. 운동 후 시기에 고민감도 C-반응단백 농도와 수축기혈압 또는 심박수와 각각 음의 상관성을 보였고, 운동 전 시기에 활성산소 농도와 수축기혈압, 이완기 혈압, 또는 심박수와 각각 양의 상관성을 나타내었다. 운동후 활성산소 농도와 중대뇌동맥의 혈류속도 간에 음의 상관성이 있었다. 운동 전 적혈구 지수(적혈구 수, 평균적혈구 용적, 평균적혈구혈색소, 평균적혈구 혈색소 농도)와 IL-6농도 사이에 반비례적 상관성이 있었다. 운동 후 활성산소 농도와 운동후 총백혈구수, 림프구수, 단구수 간에 음의 상관관계가 있었다. 운동 전, 마그네슘 농도와 IL-6, 고민감도 C-반응단백, 활성 산소 농도 사이에 음의 상관성이 있었다. 그리고 그 외 일부 생화학적 변수 및 전해질 농도와 염증성 표지자들 사이에 양혹은 음의 상관성이 있었다. 이러한 결과들은 짧은 시간 동안의 1회성 경도 유산소 운동역시 염증성 표지자들과 혈액변인 사이에 유의한 상관관계를 미칠 수 있으나 향후 좀 더 많은 연구를 통해 일회성 혹은 규칙적인 운동에 따른 성별 간 혹은 연령대별 생리학적 차이를 함께 규명할 필요 역시 있다.

Keywords

References

  1. Aaslid, R., K. F. Lindegaard, W. Sorteberg, and H. Nornes. 1989. Cerebral autoregualtion dynamics in human. Stroke 20, 45-52 https://doi.org/10.1161/01.STR.20.1.45
  2. Akira, S., T. Taga, and T. Kishimoto. 1993. Interleukin-6 in biology and medicine. Adv. Immunol. 54, 1-78 https://doi.org/10.1016/S0065-2776(08)60532-5
  3. Alessio, H. M. 1994. Lipid peroxidation processes in healthy and diseased models. In Sen, C. K., L. Packer, O. Hanninen (eds.), Exercise and oxygen toxicity. The Netherlands, Elsevier Science 269-295
  4. Bassuk, S. S. and J. E. Manson. 2005. Epidemiological evidence for the role of physical activity in reducing risk of type 2 diavetes and cardiovascular disease. J. Appl. Physiol. 99, 1193-1204 https://doi.org/10.1152/japplphysiol.00160.2005
  5. Barbagallo, M., L. J. Dominguez, A. Galioto, A. Ferlisi, C. Cani, L. Malfa, A. Pineo, A. Busardo, and G. Paolisso. 2003. Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol. Aspects Med. 24, 39-52 https://doi.org/10.1016/S0098-2997(02)00090-0
  6. Brown, D. A., M. S. Johnson, C. J. Armstrong, J. M. Lynch, N. M. Caruso, L. B. Ehlers, M. Fleshner, R L. Spencer, and R. L. 2007. Short-term treadmill running in the rat: what kind of stressor is it? J. Appl. Physiol. 103, 1979-1985 https://doi.org/10.1152/japplphysiol.00706.2007
  7. Chang, M. K., C. J. Binder, M. Torzewski, and J. L. Witztum. 2002. C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids. Proc. Natl. Acad. Sci. USA 1, 13043-13048
  8. E1-Sayed, M. S. 1996. Effects of exercise on blood coagulation. fibrinolysis and platelet aggregation. Sports Med. 22, 282-298 https://doi.org/10.2165/00007256-199622050-00002
  9. Foster, N. J., J. B. Martyn, and R. E. Rangno. 1986. Leukocytosis of exercise; role of cardiac output and catecholamines Am. Physio. Soci. 61, 2218-2223
  10. Guarnieri, C., G. Melandri, L. Caldarera, V. Cervi, F. Semprini, and A. Branzi A. 1992. Spontaneous superoxide generation by polymorphonuclear leukocytes isolated from patients with stable angina after physical exercise. Intj. Cardiol. 37, 301-307 https://doi.org/10.1016/0167-5273(92)90259-6
  11. Hoshi, T., K. Kitagawa, H. Yamagami, S. Furukado, H. Hougaku, and M. Hori. 2005. Relations of serum high-sensitivity C-reactive protein and interleukin-6 levels with silent brain infarction. Stroke 36, 768-772 https://doi.org/10.1161/01.STR.0000158915.28329.51
  12. Ji, S. R., Y. Wu, L. A. Potempa, Q. Qiu, and J. Zhao. 2006. Interactions of C-reactive protein with low-density lipoproteins: implications for an active role of modified C-reactive protein in atherosclerosis. Int. J. Biochem. Cell BioI. 38, 648-661 https://doi.org/10.1016/j.biocel.2005.11.004
  13. Jouven, X., M. Zureik, and M. Desnos. 2000. Long term outcome in asymptomatic men with exercise-induced premature ventricular depolarization. N. Engl. J. Med. 343, 826-833 https://doi.org/10.1056/NEJM200009213431201
  14. Nagaraju, K., N. Raben, G. Merritt, L. Loeffler, K. Kirk, and P. Plotz. 1998. A variety of cytokines and immunologically relevant surface molecules are expressed by normal human skeletal muscle cells under pro inflammatory stimuli. Clin. Exp. Immunol. 113, 407-414 https://doi.org/10.1046/j.1365-2249.1998.00664.x
  15. Navab, M., G. M. Anantharamaiah, S. T. Reddy, B. J. Van Lenten, B. J. Ansell, and A. M. Fogelman. 2006. Mechanisms of disease: proatherogenic HDL an evolving field. Nat. Clin. Pract. Endocrinol. Metab. 2, 504-511 https://doi.org/10.1038/ncpendmet0245
  16. Ogah. S., R. J. Brothers, Q. Barnes, W. L. Eubank, M. N. Hawkins, S. Purkayastha, A. O-Yurvati, and P. B. Rvaen. 2005. The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. J. Physiol. 569, 697-704 https://doi.org/10.1113/jphysiol.2005.095836
  17. Paolisso, G. and M. Barbagallo. 1997. Hypertension, diabetes mellitus, and insulin resistance: the role of intracellular magnesium. Am. J. Hypertens. 10, 346-355 https://doi.org/10.1016/S0895-7061(96)00342-1
  18. Pasceri, V., J. S. Cheng, J. T. Willerson, and E. T. Yeh. 2001. Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation 29, 2531-2534
  19. Pedersen, B. K., A. Steens berg, and P. Schjerling. 2001. Muscle-derived interleukin-6: possible biological effects. J. Physiol. 536, 329-337 https://doi.org/10.1111/j.1469-7793.2001.0329c.xd
  20. Roberts, C. K. and R. J. Barnard. 2005. Effects of exercise and diet on chronic disease. J. Appl. Physiol. 98, 23-30
  21. Santos-Silva, A., M. I. Rebelo, E. M. Castro, L. Belo, A. Guerra, C. Rego, and A. Quintanilha. 2001. Leukocyte activation, erythrocyte damage, lipid profile and oxidative stress imposed by high competition physical exercise in adolescents. Clin. Chim. Acta. 306, 119-126 https://doi.org/10.1016/S0009-8981(01)00406-5
  22. Sen, C. K. 1995. Oxidants and antioxidants in exercise. J. Appl. Physiol. 79, 675-686
  23. Sjodin, T., Y. Westing, and F. Apple. 1990. Biochemical mechanism for oxygen free radical formation during exercise. Sport. Med. 10, 236-254 https://doi.org/10.2165/00007256-199010040-00003
  24. Strandgaard, S. and O. B. Paulson. 1984. Cerebral autoregulation. Stroke 15, 413-416 https://doi.org/10.1161/01.STR.15.3.413
  25. Thompson, D., M. B. Pepys, and S. P. Wood. 1999. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 15, 169-177 https://doi.org/10.1016/S0969-2126(99)80023-9
  26. Tomai, F., F. Creal A. Gaspardone, F. Versaci, A. S. Ghini, L. Chiariello, and P. A. Gioffre. 2001. Unstable angina and elevated c-reactive protein levels predict enhanced vasoreactivity of the culprit lesion. Circulation 25, 1471-1476
  27. Volanakis, J. E. 2001. Human C-reactive protein: expression, structure, and function. Mol. Immunol. 3, 189-197
  28. Wang, J. S., Y. S. Li, J. C. Chen, and Y. W. Chen. 2005. Effect of exercise training and decomditining on platelet aggregation induced by alternating shear stress in men. Arterioscler Thromb. Vasco BioI. 25, 454-460 https://doi.org/10.1161/01.ATV.0000151987.04607.24

Cited by

  1. Effects of Coffee on Physical Performance in Mice vol.16, pp.3, 2011, https://doi.org/10.3746/jfn.2011.16.3.278
  2. Anti-Fatigue Effects of Fermented Rhodiola rosea Extract in Mice vol.20, pp.1, 2015, https://doi.org/10.3746/pnf.2015.20.1.38
  3. Protective Effect of Rhodiola sachalinensis A. Bor on Excessive Exercise Stress vol.56, pp.1, 2013, https://doi.org/10.3839/jabc.2013.001
  4. Protective Effects of Tyrosol Against Oxidative Damage in L6 Muscle Cells vol.24, pp.5, 2018, https://doi.org/10.3136/fstr.24.943