DOI QR코드

DOI QR Code

A Study on the Gene Expression in Shikonin-Induced Inhibition of Adipogenesis

Shikonin에 의한 지방세포형성 억제과정에서의 유전자 발현 연구

  • Lee, Hae-Yong (Department of Microbiology, Chung-Ang University College of Medicine) ;
  • Kang, Ryun-Hwa (Department of Microbiology, Chung-Ang University College of Medicine) ;
  • Chung, Sang-In (Department of Microbiology, Chung-Ang University College of Medicine) ;
  • Cho, Soo-Hyun (Department of Family Medicine, Yongsan Hospital, Chung-Ang University) ;
  • Oh, Dong-Jin (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Yoon, Yoo-Sik (Department of Microbiology, Chung-Ang University College of Medicine)
  • 이해용 (중앙대학교 의과대학 미생물학교실) ;
  • 강련화 (중앙대학교 의과대학 미생물학교실) ;
  • 정상인 (중앙대학교 의과대학 미생물학교실) ;
  • 조수현 (중앙대학교 용산병원 가정의학과) ;
  • 오동진 (중앙대학교 의과대학 내과학교실) ;
  • 윤유식 (중앙대학교 의과대학 미생물학교실)
  • Published : 2009.11.30

Abstract

Shikonin, a component of Lithospermum erythrorhizon Sieb. et Zucc, exerts various characteristics such as anti-inflammatory, anti-cancer and anti-obesity functions. To elucidate the molecular mechanism of shikonin-induced inhibition of adipogenesis, we analyzed the mRNA expression level of various adipogenesis-related factors including C/EBPs (CCAAT/enhancerbinding proteins) and $PPAR{\gamma}$ (peroxisome proliferator-activated receptor $\gamma$). The data showed that mRNA expressions of C/$EBP{\beta}$ and C/$EPB{\delta}$ were only slightly changed by shikonin treatment, but mRNA expressions of $PPAR{\gamma}$ and C/$EPB{\alpha}$ were significantly down-regulated. Then, we tested whether upstream regulators of C/$EBP{\beta}$ and $PPAR{\gamma}$ were involved in anti-adipogenesis of shikonin. C/$EBP{\gamma}$ and CHOP (C/EBP homologous protein), which are upstream regulators of C/$EBP{\beta}$, were not affected by shikonin treatment. On the contrary, the mRNA level of KROX20 was markedly down-regulated by shikonin treatment. These results suggest that KROX20 might regulate downstream factors of adipogenesis through C/$EBP{\beta}$-independent pathway. The expression of KLF15 (Kruppel-like factor15), which is a member of KLF family and is a upstream regulator of $PPAR{\gamma}$, was dramatically decreased by shikonin treatment, but KLF2 was not changed. Shikonin had no impact on the expression of KLF5 in the early stage of adipogenesis, but shikonin increased expression of KLF5 in the late stage of adipogenesis. Even though mRNA expression of KLF5 was moderately changed by shikonin treatment, its effect may be small compared with the effect of KLF15, which was markedly inhibited. Taken together, these results suggest that shikonin inhibits adipogenesis through the down-regulation of $PPAR{\gamma}$ and C/$EPB{\alpha}$, which is mediated by the down-regulation of two pro-adipogenic factors, KROX20 and KLF15.

천연생약 자초의 한 성분인 shikonin은 항염증, 항암 및 항비만 등 다양한 분야에 효과를 보여왔다. 이번 연구에서는 shikonin이유도하는 adipogenesis억제 과정에 어떤 인자들이 작용하는지 살펴보았다. Shikonin의 효과에 대한 분자적 메커니즘을 규명하기 위해, real-time PCR을 이용하여 C/EBPs, $PPAR{\gamma}$를 포함한 다양한 adipogenesis 인자들의 mRNA 발현량을 분석하였다. 그 결과, 초기 분화의 주요 조절자인 C/$EBP{\beta}$와 C/$EPB{\delta}$는 shikonin에 의해 거의 변화가 없었으나, 후기 분화의 주요 조절자인 $PPAR{\gamma}$와 C/$EPB{\alpha}$의 mRNA 발현은 유의하게 감소하였다. Shikonin에 의한 adipogenesis억제의 메커니즘을 좀 더 자세히 밝히기 위해 adipogenesis과정의 상위 단계에 위치한 조절자들의 mRNA 발현을 분석하였다. C/$EBP{\beta}$의 상위 조절자인 C/$EBP{\gamma}$, CHOP은 shikonin에 의해 영향을 받지 않았으나, KROX20의 경우 유의하게 감소하였다. 이러한 결과는 Pro-adipogenic 인자인 KROX20의 감소가 C/$EBP{\beta}$에 영향을 주기 보다는 C/$EBP{\beta}$와 독립적으로 그 하위의 인자들에게 영향을 줄 수 있음을 제시한다. $PPAR{\gamma}$의 상위 조절자로 알려져 있는 KLF 들 중에서 pro-adipogenic 인자인 KLF15의 mRNA 발현은 shikonin에 의해 급격히 감소하였으나 anti-adipogenic 인자인 KLF2는 shikonin에 의한 변화가 거의 없었다. 또 다른 pro-adipogenic 인자인 KLF5의 경우, 주로 작용하는 초기 분화에서는 shikonin에 의해 거의 변화가 없었지만, 후기 분화에서는 조금 증가하였다. 이러한 후기 분화에서의 KLF5의 변화는 KLF15에 비해 전체 분화에 크게 영향을 주지 못하는 것 같다. 결론적으로, shikonin은 pro-adipogenic 인자인, KROX20과 KLF15의 조절을 통해 $PPAR{\gamma}$ 및 C/$EPB{\alpha}$의 mRNA 발현을 억제함으로써 지방 세포의 분화를 저해한다고 사료된다.

Keywords

References

  1. Abet E. D., O. Peroni, J. K. Kim, Y. B. Kim, O. Boss, E. Hadro, T. Minnemann, G. I. Shulman, and B. B. Kahn. 2001. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729-733 https://doi.org/10.1038/35055575
  2. Ahmed, W., O. Ziouzenkova, J. Brown, P. Devchand, S. Francis, M. Kadakia, T. Kanda, G. Orasanu, M. Sharlach, F. Zandbergen, and J. Plutzky. 2007. PP ARs and their metabolic modulation: new mechanisms for transcriptional regulation? J. Intern. Med. 262, 184-198 https://doi.org/10.1111/j.1365-2796.2007.01825.x
  3. Banerjee, S. S., M. W. Feinberg, M. Watanabe, S. Gray, R. L. Haspet D. J. Denkinger, R. Kawahara, H. Hauner, and M. K. Jain. 2003. The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expressionand adipogenesis. J. BioI. Chem. 278, 2581-2584 https://doi.org/10.1074/jbc.M210859200
  4. Barak, Y., M. C. Nelson, E. S. Ong, Y. Z. Jones, P. Ruiz-Lozano, K. R. Chien, A. Koder, and R. M. Evans. 1999. PP AR gamma is required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585-595 https://doi.org/10.1016/S1097-2765(00)80209-9
  5. Brown, J. D. and J. Plutzky. 2007. Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation 115, 518-533 https://doi.org/10.1161/CIRCULATIONAHA.104.475673
  6. Cao, Z., R. M. Umek, and S. L. McKnight. 1991. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-Ll cells. Genes Dev. 5, 1538-1552 https://doi.org/10.1101/gad.5.9.1538
  7. Chen, X., J. Oppenheim, and O. M. Howard. 2001. Shikonin, a component of antiinflammatory Chinese herbal medicine, selectively blocks chemokine binding to CC chemokine receptor-I. Int. Immunopharmacol. 1, 229-236 https://doi.org/10.1016/S1567-5769(00)00033-3
  8. Chen, X., L. Yang, J. J. Oppenheim, and M. Z. Howard. 2002. Cellular pharmacology studies of shikonin derivatives. Phytother. Res. 16, 199-209 https://doi.org/10.1002/ptr.1100
  9. Chen, Z., J. I. Torrens, A. Anand, B. M. Spiegelman, and J. M. Friedman. 2005. Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. Cell Metab. 1, 93-106 https://doi.org/10.1016/j.cmet.2004.12.009
  10. Christy, R. J., K. H. Kaestner, D. E. Geiman, and M. D. Lane. 1991. CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. Proc. Natl. Acad. Sci. USA 88, 2593-2597 https://doi.org/10.1073/pnas.88.6.2593
  11. Darlington, G. J., S. E. Ross, and O. A. MacDougald. 1998. The role of C/EBP genes in adipocyte differentiation. J. BioI. Chem. 273, 30057-30060 https://doi.org/10.1074/jbc.273.46.30057
  12. Freytag, S. O., D. L. Paielli, and J. D. Gilbert. 1994. Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblasticcells. Genes. Dev. 8, 1654-1663 https://doi.org/10.1101/gad.8.14.1654
  13. Fujii, N., Y. Yamashita, Y. Arima, M. Nagashima, and H. Nakano. 1992. Induction of topoisomerase II-mediated DNA cleavage by the plant naphthoquinones plumbagin and shikonin. Antimicrob. Agents Chemother 36, 2589-2594 https://doi.org/10.1128/AAC.36.12.2589
  14. Giorgino, F., L. Laviola, and J. W. Eriksson. 2005. Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta. Physiol. Scand. 183, 13-30 https://doi.org/10.1111/j.1365-201X.2004.01385.x
  15. Gray, S., M. W. Feinberg, S. Hull, C. T. Kuo, M. Watanabe, S. Sen-Banerjee, A. DePina, R. Haspet, and M. K. Jain. 2002. The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J.Biol. Chem. 277, 34322-34328 https://doi.org/10.1074/jbc.M201304200
  16. Gustafson, B. and U. Smith. 2006. Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes. J. BioI. Chem. 281, 9507-9516 https://doi.org/10.1074/jbc.M512077200
  17. Hamm, J. K., B. H. Park, and S. R. Farmer. 2001. A role for C/EBPbeta in regulating peroxisome proliferatoractivated receptor gamma activity during adipogenesis in 3T3-Ll preadipocytes. J. BioI. Chem. 276, 18464-18471 https://doi.org/10.1074/jbc.M100797200
  18. Hirai, S., M. Yamanaka, H. Kawachi, T. Matsui, and H. Yano. 2005. Activin A inhibits differentiation of 3T3-L1 preadipocyte. Mol.Cell Endocrinol. 232, 21-26 https://doi.org/10.1016/j.mce.2005.01.001
  19. Kaczynski, J., T. Cook, and R Urrutia. 2003. Sp1- and Kruppel-like transcription factors. Genome. BioI. 4, 206 https://doi.org/10.1186/gb-2003-4-2-206
  20. Kamei, R., Y. Kitagawa, M. Kadokura, F. Hattori, O. Hazeki, Y. Ebina, T. Nishihara, and S. Oikawa. 2002. Shikonin stimulates glucose uptake in 3T3-Ll adipocytes via an insulin-independent tyrosine kinase pathway. Biochem. Biophys. Res. Commun. 292, 642-651 https://doi.org/10.1006/bbrc.2002.6714
  21. Koerner, A., J. Kratzsch, and W. Kiess. 2005. Adipocytokines: leptin--the classicat resistin--the controversicat adiponectin--the promising, and more to come. Best. Pract. Res. Clin. Endocrinol. Metab. 19, 525-546 https://doi.org/10.1016/j.beem.2005.07.008
  22. Kundakovic, T., N. Fokialakis, S. Dobric, H. Pratsinis, D. Kletsas, N. Kovacevic, and I. Chinou. 2006. Evaluation of the anti-inflammatoryand cytotoxic activities of naphthazarine derivatives from Onosma leptantha. Phytomedicine 13, 290-294 https://doi.org/10.1016/j.phymed.2004.10.009
  23. Lee, H., R. Kang, and Y. Yoon. 2009. Shikonin inhibits fat accumulation in 3T3-Ll adipocytes. Phytother. Res. DOl: 10.1002/ ptr.2942
  24. Lin, F. T. and M. D. Lane. 1994. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-Ll adipocyte differentiation program. Proc. Nati. Acad. Sci. USA 91, 8757-8761 https://doi.org/10.1073/pnas.91.19.8757
  25. Livak, K. J.and T. D. Schmitt gen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta qT)) Method. Methods 25, 402-408 https://doi.org/10.1006/meth.2001.1262
  26. MacDougald, O. A. and M. D. Lane. 1995. Transcriptional regulation of gene expression during adipocyte differentiation. Annu.Rev. Biochem. 64, 345-373 https://doi.org/10.1146/annurev.bi.64.070195.002021
  27. Mori, T., H. Sakaue, H. Iguchi, H. Gomi, Y. Okada, Y. Takashima, K. Nakamura, T. Nakamura, T. Yamauchi, N. Kubota, T. Kadowaki, Y. Matsuki, W. Ogawa, R. Hiramatsu, and M. Kasuga. 2005. Role of Kruppel-like factor 15 (KLFI5) in transcriptional regulation of adipogenesis. J. BioI. Chem. 280, 12867-12875 https://doi.org/10.1074/jbc.M410515200
  28. Morrison, R. F. and S. R. Farmer. 2000. Hormonal signaling and transcriptional control of adipocyte differentiation. J. Nutr. 130, 3116S-3121S
  29. Morrison, R. F. and S. R. Farmer. 1999. Role of PPARgamma in regulating a cascade expression of cyclin-dependent kinase inhibitors, pI8(INK4c) and p21(Wafl/Cipl), during adipogenesis. J. BioI. Chem. 274, 17088-17097 https://doi.org/10.1074/jbc.274.24.17088
  30. Oishi, Y., I. Manabe, K. Tobe, K. Tsushima, T. Shindo, K. Fujiu, G. Nishimura, K. Maemura, T. Yamauchi, N. Kubota, R. Suzuki, T. Kitamura, S. Akira, T. Kadowaki, and R. Nagai. 2005. Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab. 1, 27-39 https://doi.org/10.1016/j.cmet.2004.11.005
  31. Rosen, E. D., C. H. Hsu, X. Wang, S. Sakai, M. W. Freeman, F. J. Gonzalez, and B. M. Spiegelman. 2002. C/EBPalpha induces adipogenesis through PP ARgamma: a unified pathway. Genes Dev. 16, 22-26 https://doi.org/10.1101/gad.948702
  32. Rosen, E. D. and O. A. MacDougald. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell BioI. 7, 885-896 https://doi.org/10.1038/nrm2066
  33. Shao, D. and M. A Lazar. 1997. Peroxisome proliferator activated receptor gamma, CCAAT / enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. J. BioI. Chem. 272, 21473-21478 https://doi.org/10.1074/jbc.272.34.21473
  34. Shepherd, P. R. and B. B. Kahn. 1999. Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus. N. Engl. J. Med. 341, 248-257 https://doi.org/10.1056/NEJM199907223410406
  35. Tanaka, T., N. Yoshida, T. Kishimoto, and S. Akira. 1997. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. Ernbo. J. 16, 7432-7443 https://doi.org/10.1093/emboj/16.24.7432
  36. Tontonoz, P., E. Hu, and B. M. Spiegelman. 1994. Stimulation of adipogenesis in fibroblasts by PP AR gamma 2, a lipid-activated transcription factor. Cell 79, 1147-1156 https://doi.org/10.1016/0092-8674(94)90006-X
  37. Wang, N. D., M. J. Finegold, A. Bradley, C. N. Ou, S. V. Abdelsayed, M. D. Wilde, L. R. Taylor, D. R. Wilson, and G. J. Darlington. 1995. Impaired energy homeostasis in C/EBP alpha knockout mice. Science 269, 1108-1112 https://doi.org/10.1126/science.7652557
  38. Weiss, L., G. E. Hoffmann, R. Schreiber, H. Andres, E. Fuchs, E. Korber, and H. J. Kolb. 1986. Fatty-acid biosynthesis in man, a pathway of minor importance. Purification, optimal assay conditions, and organ distribution of fatty-acid synthase. BioI. Chem. Hoppe. Seyler. 367, 905-912 https://doi.org/10.1515/bchm3.1986.367.2.905
  39. Wu, Z., N. L. Bucher, and S. R. Farmer. 1996. Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol. Cell BioI. 16, 4128-4136
  40. Wu, Z., Y. Xie, N. L. Bucher, and S. R. Farmer. 1995. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PP AR gamma and stimulates adipogenesis. Genes Dev. 9, 2350-2363 https://doi.org/10.1101/gad.9.19.2350
  41. Yeh, W. C., Z. Cao, M. Classon, and S. L. McKnight. 1995. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev. 9, 168-181 https://doi.org/10.1101/gad.9.2.168
  42. Yoon, Y., Y. O. Kim, N. Y. Lim, W. K. Jeon, and H. J. Sung. 1999. Shikonin, an ingredient of Lithospermum erythrorhizon induced apoptosis in HL60 human premyelocytic leukemia cell line. Planta. Med. 65, 532-535 https://doi.org/10.1055/s-1999-14010
  43. Zhang, J. W., D. J. Klemm, C. Vinson, and M. D. Lane. 2004. Role of CREB in transcriptional regulation of CCAAT / enhancer-binding protein beta gene during adipogenesis. J. BioI. Chem. 279, 4471-4478 https://doi.org/10.1074/jbc.M311327200
  44. Zisman, A., O. D. Peroni, E. D. Abel, M. D. Michael, F. Mauvais-Jarvis, B. B. Lowell, J. F. Wojtaszewski, M. F. Hirshman, A. Virkamaki, L. J. Goodyear, C. R. Kahn, and B. B. Kahn. 2000. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat. Med. 6, 924-928 https://doi.org/10.1038/78693

Cited by

  1. Evaluation of Inhibitory Effect of Phlorotannins from Ecklonia cava on Triglyceride Accumulation in Adipocyte vol.61, pp.36, 2013, https://doi.org/10.1021/jf401454m