DOI QR코드

DOI QR Code

A Natural L-Arginine Analog, L-Canavanine-Induced Apoptosis is Suppressed by Protein Tyrosine Kinase p56lck in Human Acute Leukemia Jurkat T Cells

인체 급성백혈병 Jurkat T 세포에 있어서 L-canavanine에 의해 유도되는 세포자살기전에 미치는 단백질 티로신 키나아제 p56lck의 저해 효과

  • Park, Hae-Sun (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Jun, Do-Youn (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Woo, Hyun-Ju (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Rue, Seok-Woo (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Sang-Kook (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Kyung-Min (School of Applied Ecological Resources, College of Ecology and Environmental Sciences, Kyungpook National University) ;
  • Park, Wan (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Moon, Byung-Jo (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Young-Ho (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • 박해선 (경북대학교 생명과학부) ;
  • 전도연 (경북대학교 생명과학부) ;
  • 우현주 (경북대학교 생명과학부) ;
  • 류석우 (경북대학교 생명과학부) ;
  • 김경민 (대구경북대학교 상주캠퍼스, 생태자원응용학부) ;
  • 김상국 (경북대학교 생명과학부) ;
  • 박완 (경북대학교 생명과학부) ;
  • 문병조 (경북대학교 생명과학부) ;
  • 김영호 (경북대학교 생명과학부)
  • Published : 2009.11.30

Abstract

To elucidate further the antitumor effects of a natural L-arginine analogue, L-canavanine, the mechanism underlying apoptogenic activity of L-canavanine and its modulation by protein tyrosine kinase $p56^{lck}$ was investigated in human Jurkat T cells. When the cells were treated with 1.25 to 2.5 mM L-canavanine for 36 h, several apoptotic events including mitochondrial membrane potential (${\Delta\Psi}m$) loss, activation of caspase-9, -3, -8, and -7, poly (ADP-ribose) polymerase (PARP) degradation, and DNA fragmentation were induced without alteration in the levels of Fas or FasL. These apoptotic changes were more significant in $p56^{lck}$-deficient Jurkat clone JCaM1.6 than in $p56^{lck}$-positive Jurkat clone E6.1. The L-canavanine-induced apoptosis observed in $p56^{lck}$-deficient JCaM1.6 cells was significantly reduced by introducing $p56^{lck}$ gene into JCaM1.6 cells by stable transfection. Treatment of JCaM1.6/lck cells with L-canavanine caused a transient 1.6-fold increase in the kinase activity of $p56^{lck}$. Both FADD-positive wild-type Jurkat T cell clone A3 and FADD-deficient Jurkat T cell clone I2.1 exhibited a similar susceptibility to the cytotoxicity of L-canavanine, excluding involvement of Fas/FasL system in triggering L-canavanine-induced apoptosis. The L-canavanine-induced apoptotic sub-$G_1$ peak and activation of caspase-3, -8, and -7 were abrogated by pan-caspase inhibitor (z-VAD-fmk), whereas L-canavanine-induced activation of caspase-9 was not affected. These results demonstrated that L-canavanine caused apoptosis of Jurkat T cells via the loss of ${\Delta\Psi}m$, and the activation of caspase-9, -3, -8, and -7, leading to PARP degradation, and that the $p56^{lck}$ kinase attenuated the ${\Delta\Psi}m$ loss and activation of caspases, and thus contributed as a negative regulator to L-canavanine-induced apoptosis.

L-arginine 구조유사체인 L-canavanine의 인체 급성백혈병 Jurkat T 세포에 대한 apoptosis 유도활성이 단백질 티로신키나아제 $p56^{lck}$에 어떻게 조절되는지를 규명하기 위해 $p56^{lck}$를 발현하는 Jurkat T 세포주 E6.1과 $p56^{lck}$-결손 Jurkat T 세포주 JCaM1.6에 있어서 L-canavanine의 세포독성, L-canavanine에 의해 유도되는 apoptotic DNA fragmentation 및 apoptotic sub-$G_1$ peak를 비교하여 본 바, $p56^{lck}$-negative JCaM1.6 세포가 $p56^{lck}$-positive E6.1 세포에 비해 L-canavanine의 apoptotis 유도활성에 훨씬 더 민감한 것으로 나타났다. 이러한 $p56^{lck}$-negative JCaM1.6 세포의 민감성은 JCaM1.6 세포에 $p56^{lck}$ 유전자를 transfection시켜 발현시키면 현저히 감소되었다. L-Canavanine에 의해 유도되는 apoptosis관련 현상들을 $p56^{lck}$-stable transfectant인 JCaM1.6/lck 세포와 empty vector-transfectant 인 $p56^{lck}$-negaive JCaM1.6/vector 세포에서 Western blot analysis로 비교한 결과, L-canavanine에 의해 유도되는 mitochondrial membrane potential (${\Delta\Psi}m$)의 감소, caspase-9, -8, -7 및 -3의 활성화, 그리고 PARP 및 $PLC{\gamma}$-1의 분해가 JCaM1.6/vector 세포에 비해 JCaM1.6/lck 세포에서 더 약하게 나타났다. JCaM1.6/lck 세포를 2.5 mM L-canavanine으로 처리한 다음 세포 내 $p56^{lck}$ kinase 활성의 변화를 $\alpha$-casein을 기질로 하여 시간 별로 측정한 결과, L-canavanine의 처리 후 15분만에 $p56^{lck}$ kinase의 활성이 약 1.6배 증가되었으며 이후 6시간 동안은 약 1.3~1.4 배정도 증가된 수준으로 kinase 활성이 유지되는 것으로 확인되었다. L-Canavanine에 의한 apoptosis의 개시에 Fas/FasL 상호작용이 관련되는지를 규명하기 위해 FADD-negative Jurkat T 세포주 I2.1, caspase-8-negative Jurkat T 세포주 I9.2 및 wild-type Jurkat T 세포주 A3에 대한 L-canavanine의 세포독성을 비교한 결과, A3와 I2.1 세포의 경우는 L-canavanine의 세포독성이 동일하게 나타났고, 특히 caspase-8가 결손된 I9.2 세포의 경우는 L-canavanine의 세포독성에 대한 민감성이 A3와 I2.1 세포에 비해 단지 미약하게만 완화되는 것으로 나타나, L-canavanine의한 apoptosis에는 Fas/FasL 상호작용이 관련되어 있지 않으며, 또한 caspase-8의 역할이 필수적이지 않음을 시사하였다. Jurkat T 세포에 있어서 L-canavanie에 의해 유도되는 sub-$G_1$ peak 및 caspases 활성화에 미치는 pan-caspase inhibitor (z-VAD-fmk), caspase-9 inhibitor (z-LEHD-fmk), caspase-3 inhibitor (z-DEVD-fmk), caspase-4 inhibitor (z-LEVD-fmk) 및 caspase-12 inhibitor (z-ATAD-fmk)의 영향을 조사한 결과, L-canavanie에 의한 apoptosis는 ${\Delta\Psi}m$의 감소, caspase-9 및 caspase -3의 활성화에 뒤따른 caspase-8 및 caspase-7의 활성화, 그리고 PARP의 분해의 순서로 유도되는 것으로 나타났으며, 아울러 caspase-9의 활성화와 함께 caspase-12의 활성화가 L-canavanine 처리에 따른 caspase-3의 활성화에 요구되는 것으로 확인되었다. 결론적으로, L-canavanine 처리에 의한 Jurkat T 세포의 apoptosis는 ${\Delta\Psi}m$ 감소, caspase-9, caspase-3 및 caspase-7의 활성화에 의해 유도되며, 이들 apoptosis 현상들은 $p56^{lck}$에 의해 negative regulation되었다.

Keywords

References

  1. Bae, M. A., D. Y. Jun, K. M. Kim, S. K. Kim, J. S. Chun, D. Taub, W. Park B. J. Moon, and Y. H. Kim. 2005. Protein tyrosine kinases, $p56^{lck}$ and $p59^{fyn}$, and MAP kinase JNK1 provide an early signal required for upregulation of Fas ligand expression in aburatubolactam C-induced apoptosis of human Jurkat T cells. Journal of Microbiology and Biotechnology 15, 756-766
  2. Chen, Y. and P. W. Piper. 1995. Consequences of the overexpression of ubiquitin in yeast: elevated tolerances of osmostress, ethanol and canavanine, yet reduced tolerances of cadmium, arsenite and paromomycin. Biochimica et Biaphysica Acta 1268, 59-64 https://doi.org/10.1016/0167-4889(95)00044-S
  3. Ding, Y, Y. Matsukawa, N. OhtaniFujita, D. Kato, S. Dao, T. Fujii, Y. Naito, T. Yoshikawa, T. Sakai, and G. A. Rosenthal. 1999. Growth inhibition of A549 human lung adenocarcinoma cells by L-canavanine is associated with p21/WAF1 induction. Japanese Journal of Cancer Research 90, 69-74 https://doi.org/10.1111/j.1349-7006.1999.tb00667.x
  4. Friesen, C., I. Herr, P. H. Krammer, and K. M. Debatin. 1996. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nature Medicine 2, 574-578 https://doi.org/10.1038/nm0596-574
  5. Green, M. H. and F. J. Ward. 1983. Enhancement of human tumor cell killing by L-canavanine in combination with gamma radiation. Cancer Research 43, 4180-4182 https://doi.org/10.1016/0041-008X(87)90061-5
  6. Green, M. H., T. L. Brooks, J. Mendelsohn, and S. B. Howell. 1980. Antitumor activity of L-canavanine against L1210 murine leukemia. Cancer Research 40, 535-537 https://doi.org/10.1016/0009-2797(86)90061-X
  7. Hannun, Y. A. 1997. Apoptosis and dilemma of cancer chemotheraphy. Blood 89, 1845-1853
  8. Jang, M. H., D. Y. Jun, S. W. Rue, K. H. Han, W. Park, and Y. H. Kim. 2002. Arginine antimetabolite L-canavanine induces apoptotic cell death in human Jukat T cells via caspase-3 activation regulated by Bcl-2 or Bcl-xL. Biochemical and Biophysical Research Communications 295, 283-288 https://doi.org/10.1016/S0006-291X(02)00650-2
  9. Jun, D. Y., J. S. Kim, H. S. Park, C. R. Han, Z. Fang, M. H. Woo, I. K. Rhee, and Y. H. Kim. 2007. Apoptogenic activity of Zanthoxylum schinifolium toward human acute leukemia Jurkat T cells is associated with ER stress-mediated caspase-8 activation that stimulates mitochondria-dependent or -independent caspase cascade. Carcinogenesis 28, 1303-1313 https://doi.org/10.1093/carcin/bgm028
  10. Jun, D. Y., H. S. Park, J. S. Kim, J. S. Kim, W. Park, B. H. Song, H. S. Kim, D. Taub, and Y. H. Kim. 2008. 17$\alpha$-estradiol arrests cell cycle progression at $G_{2}$/M and induces apoptotic cell death in human acute leukemia Jurkat T cells. Toxicology and Applied Pharmacology 231, 401-412 https://doi.org/10.1016/j.taap.2008.05.023
  11. Juo, P., M. S. Woo, C. J. Kuo, P. Signorelli, H. P. Biemann, Y. A. Hannun, and J. Blenis. 1999. F ADD is required for multiple signaling events downstream of the receptor Fas. Cell Growth and Differentiation 10, 797-804
  12. Kim, Y. H., M. J. Buchholz, and A. A. Nordin. 1993. Murine T-lymphocyte proliferation induced by interleukin 2 correlates with a transient increase in $p56^{lck}$ kinase activity and the tyrosine phosphorylation of a 97-kDa protein. Proceedings of National Academy of Sciences USA 90, 3187-3191 https://doi.org/10.1073/pnas.90.8.3187
  13. Mengoli, M., N. Bangi, G. Luccarini, V. N. Ronchi, and D. Serafini-Fracassini. 1989. Daucus carota cell cultures: polyamines and effect of polyamine biosynthesis inhibitors in the preembryogenic phase and different embryo stages. Journal of Plant Physiology 134, 389-394 https://doi.org/10.1016/S0176-1617(89)80001-X
  14. Momoi, T. 2004. Caspases involved in ER stress-mediated cell death. Journal of Chemical Neuroanatomy 28, 101-105 https://doi.org/10.1016/j.jchemneu.2004.05.008
  15. Muller, M., S. Strand, H. Hug, E. M. Heinemann, H. Walczak, W. J. Hofmann, W. Stremmel P. H. Krammer, and P. R. Galle. 1997. Drug-induced apoptotsis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. Journal of Clinical Investigation 99, 403-413 https://doi.org/10.1172/JCI119174
  16. Nagarkatti, N., and B. A. Davis. 2003. Tamoxifen induces apoptosis in $Fas^{+}$ tumor cells by upregulating the expression of Fas ligand. Cancer Chemotherapy and Pharmacology 51, 284-290
  17. Robertson, A. T., R. C. Bates, and E. R. Stout. 1984. Reversible inhibition of bovine parvovirus DNA replication by aphidicolin and L-canavanine. Journal of General Virology 65, 1497-1505 https://doi.org/10.1099/0022-1317-65-9-1497
  18. Rosenthal, G. 1998. The protective action of a higher plant toxic product. Bioscience 38, 104-108
  19. Rosenthal, G. A. 1977. The biological effects and mode of action of L-canavanine, a structural analog of L-canavanine. Quarterly Review of Biology 52, 155-178 https://doi.org/10.1086/409853
  20. RosenthaL G. A., J. -M. Reichart, and J. A. Hoffman. 1989. L-canavanine incorporation into vitellogenin and macromolecular conformation. Journal of Biological Chemistry 264, 13693-13696
  21. Schwartz, M., A. Altman, Y. Cohen, and T. Arzee. 1997. Inhibition of polyamine biosynthesis by L-canavanine and its effect on meristematic activity, growth, and development of Zea mays roots. Israel Journal of Plant Sciences 45, 23-30 https://doi.org/10.1080/07929978.1997.10676666
  22. Seu, J. H., B. H. Song, and C. B. Yu. 1973. Studies on the inhibitory substance of yeast growth: effect on the nitrogen uptake. Korean Journal of Applied Microbiology and Bioengineering 1, 3-11
  23. Slee, E. A., H. Zhu, S. C. Chow, M. MacFarlane, D. W. Nicholson, and G. M. Cohen. 1996. Benzyloxycarbonyl-ValAla-Asp (OMe) fluoromethylketone (z-VAD-fmk) inhibits apoptosis by blocking the processing CPP32. Biochemical Journal 315, 21-24
  24. Swaffar, D. S. and C. Y. Ang. 1999. Growth inhibitory effect of L-canavanine against MIA PaCa-2 pancreatic cancer cells is not due to conversion to its toxic metabolite canaline. Anticancer Drugs 10, 113-118 https://doi.org/10.1097/00001813-199901000-00014
  25. Swaffar, D. S., C. Y. Ang, P. B. Desai, G. A. Rosenthal, D. A. Thomas, P. A. Crooks, and W. J. John. 1995. Combination therapy with 5-fluoruracil and L-canavanine: in vitro and in vivo studies. Anticancer Drugs 6, 586-593 https://doi.org/10.1097/00001813-199508000-00012
  26. Thomas, D. A., G. A. Rosenthal, D. V. Gold, and K. M. Dickey. 1986. Growth inhibition of a rat colon tumor by L-canavanine. Cancer Research 46, 2898-2903
  27. Tsirigotis, M., M. Zhang, R. K. Chiu, B. G. Wouters, and D. A. Gray. 2001. Sensitivity of mammalian cells expressing mutant ubiquitin to protein-damaging agents. Journal of Biological Chemistry 276, 46073-46078 https://doi.org/10.1074/jbc.M109023200
  28. Twiddy, D. and K. Cain. 2007. Caspase-9 cleavage, do you need it? Biochemical Journal 405, e1-e2
  29. Veillette, A., I. D. Horak, E. M. Horak, M. A. Bookman, and J. B. Bolen. 1988. Alterations of the lymphocyte-specific protein tyrosine kinase ($p56^{lck}$) during T-cell activation. Molecular and Cellular Biology 8, 4353-4361
  30. Worthen, D. R., L. Chien, C. P. Tsuboi, X. Y. Mu, M. M. Bartik, and P. A. Crooks. 1998. L-Canavanine modulates cellular growth, chemosensitivity and P-glycoprotein substrate accumulation in cultured human tumor cell lines. Cancer Letter 132, 229-239 https://doi.org/10.1016/S0304-3835(98)00233-X
  31. Zamzami, N., P. Marchetti, M. Caste do, C. Zanin, J. L. Vayssiere, P. X. Petit, and G. Kroemer. 1995. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. Journal of Experimental Medicine 181, 1661-1672 https://doi.org/10.1084/jem.181.5.1661
  32. Zou, H., R. Yang, J. Hao, J. Wang, C. Sun, S. W. Fesik, J. C. Wu, K. J. Tomaselli, and R. C. Armstrong. 2003. Regulation of the Apaf-1/ caspase-9 apoptosome by caspase-3 and XIAP. Journal of Biological Chemistry 278, 8091-8098 https://doi.org/10.1074/jbc.M204783200