DOI QR코드

DOI QR Code

캐너비노이드 수용체 CB2의 신호전달작용에 미치는 RGS3의 억제적 효과

RGS3 Suppresses cAMP Response Element (CRE) Activity Mediated by CB2 Cannabinoid Receptor in HEK293 Cells

  • 김성대 (경북대학교 수의과대학 수의학과) ;
  • 이휘민 (경북대학교 수의과대학 수의학과) ;
  • 메하리 엔델 (경북대학교 수의과대학 수의학과) ;
  • 조재열 (강원대학교 생명공학부 분자의생명공학) ;
  • 박화진 (인제대학교 의생명공학대학 임상병리학과) ;
  • 오재욱 (건국대학교 동물생명과학대학 축산식품생물공학) ;
  • 이만휘 (경북대학교 수의과대학 수의학과)
  • Kim, Sung-Dae (Laboratory of Physiology & Signaling, College of Veterinary Medicine, Kyungpook National University) ;
  • Lee, Whi-Min (Laboratory of Physiology & Signaling, College of Veterinary Medicine, Kyungpook National University) ;
  • Endale, Mehari (Laboratory of Physiology & Signaling, College of Veterinary Medicine, Kyungpook National University) ;
  • Cho, Jae-Youl (School of Bioscience and Biotechnology, Kangwon National University) ;
  • Park, Hwa-Jin (College of Biomedical Science and Engineering, Inje University) ;
  • Oh, Jae-Wook (College of Animal Bioscience & Technology, Konkuk University) ;
  • Rhee, Man-Hee (Laboratory of Physiology & Signaling, College of Veterinary Medicine, Kyungpook National University)
  • 발행 : 2009.11.30

초록

RGS단백질은 G 단백질 신호전달작용에 있어서 신호를 억제하는 조절단백질로서 G 단백질 매개수용체(GPCR)의 활성을 억제하는 것으로 알려졌다. 그렇지만 캐너비노이드 수용체 CB2의 활성에 있어서 RGS 단백질의 조절효과에 관해서는 지금까지 알려져 있지 않다. 그러므로 본 연구에서 우리는 RGS2, 3, 4, 5와 캐너비노이드 수용체 CB2 cDNA를 동시에 HEK293 세포주에 발현시킨 후 각 RGS 단백질의 효과를 조사하였다. CB2 단백질을 발현하는 HEK293 세포주(CB2-HEK293)에서 CB2 효현제인 WIN55,212-2는 폴스콜린으로 유도된 cAMP response element (CRE) 활성을 억제하였다. 이러한 WIN55,212-2의 CRE 억제 활성은 RGS3에 의하여 차단되었지만 RGS2, 4, 및 RGS5에서는 관찰되지 않았다. 뿐만 아니라 RGS3 small interference RNA (siRNA)를 사용하여 내인성 RGS3 단백질의 발현을 저하시키면 WIN55,212-2에 의한 폴스콜린 유도 CRE 억제활성은 더욱 증강되었다. 이상의 결과는 캐너비노이드 수용체 CB2 신호전달작용에 있어서 RGS 단백질의 기능적 역할과 특히 내인성 RGS3의 캐너비노이드 수용체 CB2에 대한 선택적 작용을 나타낸다.

RGS proteins have been identified as negative regulators of G protein signalling pathways and attenuate the activity of GPCR receptors. However, information on the regulatory effects of RGS proteins in the activity of cannabinoid receptors is limited. In this study, the role of RGS proteins on the signal transduction of the CB2 cannabinoid receptor was investigated in HEK293 cells co-transfected with CB2-receptors and plasmids encoding RGS2, RGS3, RGS4 and RGS5. Treatment of cells with WIN55, 212-2, a CB2 receptor agonist, inhibited forskolin-induced cAMP response element (CRE) activity in CB2-transfected HEK293 (CB2-HEK293) cells. This inhibitory effect of WIN 55, 212-2 on CRE activity was reversed by co-transfection of CB2-HEK293 cells with RGS3, but not with RGS2, RGS4 and RGS5. However, endogenous RGS3 protein knocked down by a small interfering siRNA targeting RGS3 gene enhanced inhibition of forskolin induced CRE activity via agonist induced CB2 receptor signal transduction. These results indicate the functional role of endogenous RGS protein in cannabinoid signaling pathways and define receptor-selective roles of endogenous RGS3 in modulating CRE transcriptional responses to agonist induced CB2 receptor activity.

키워드

참고문헌

  1. Abood, M. E. and B. R. Martin. 1996. Molecular neurobiology of the cannabinoid receptor. Int. Rev. Neurobiol. 39, 197-221 https://doi.org/10.1016/S0074-7742(08)60667-4
  2. Bayewitch, M., M. H. Rhee, T. Avidor-Reiss, A. Breuer, R. Mechoulam, and Z. Vogel. 1996. (-)-Delta9-tetrahydrocannabinol antagonizes the peripheral cannabinoid receptormediated inhibition of adenylyl cyclase. J. BioI. Chem. 271, 9902-9905 https://doi.org/10.1074/jbc.271.17.9902
  3. Calandra, B., M. Portier, A. Kerneis, M. Delpech, C. Carillon, G. Le Fur, P. Ferrara, and D. Shire. 1999. Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor. Eur. J. Pharmacol. 374, 445-455 https://doi.org/10.1016/S0014-2999(99)00349-0
  4. Chatterjee, T. K., A. K. Eapen, and R. A. Fisher. 1997. A truncated form of RGS3 negatively regulates G proteincoupled receptor stimulation of adenylyl cyclase and phosphoinositide phospholipase C. J. BioI. Chem. 272, 15481-15487 https://doi.org/10.1074/jbc.272.24.15481
  5. Cladman, W. and P. Chidiac. 2002. Characterization and comparison of RGS2 and RGS4 as GTPase-activating proteins for m2 muscarinic receptor-stimulated G(i). Mol. Pharmacol. 62, 654-659 https://doi.org/10.1124/mol.62.3.654
  6. Clark, M. J., C. Harrison, H. Zhong, R. R. Neubig, and J. R. Traynor. 2003. Endogenous RGS protein action modulates mu-opioid signaling through Galphao. Effects on adenylyl cyclase, extracellular signal-regulated kinases, and intracellular calcium pathways. J. BioI. Chem. 278, 9418-9425 https://doi.org/10.1074/jbc.M208885200
  7. De Vries, L., B. Zheng, T. Fischer, E. Elenko, and M. G. Farquhar. 2000. The regulator of G protein signaling family. Annu. Rev. Pharmacol. Toxicol. 40, 235-271 https://doi.org/10.1146/annurev.pharmtox.40.1.235
  8. Demuth, D. G. and A. Molleman. 2006. Cannabinoid signalling. Life Sci. 78, 549-563 https://doi.org/10.1016/j.lfs.2005.05.055
  9. Dohlman, H. G., and J. Thorner. 1997. RGS proteins and signaling by heterotrimeric G proteins. J. BioI. Chem. 272, 3871-3874 https://doi.org/10.1074/jbc.272.7.3871
  10. Dorf, M. E., M. A. Berman, S. Tanabe, M. Heesen, and Y. Luo. 2000. Astrocytes express functional chemokine receptors. J. Neuroimmunol. 111, 109-121 https://doi.org/10.1016/S0165-5728(00)00371-4
  11. Dulin, N. O., A. Sorokin, E. Reed, S. Elliott, J. H. Kehrl, and M. J. Dunn. 1999. RGS3 inhibits G protein-mediated signaling via translocation to the membrane and binding to Galpha11. Mol. Cell BioI. 19, 714-723 https://doi.org/10.1042/BJ20020390
  12. Galiegue, S., S. Mary, J. Marchand, D. Dussossoy, D. Carriere, P. Carayon, M. Bouaboula, D. Shire, G. Le Fur, and P. Casellas. 1995. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem. 232, 54-61 https://doi.org/10.1111/j.1432-1033.1995.tb20780.x
  13. Ghavami, A., R. A. Hunt, M. A. Olsen, J. Zhang, D. L. Smith, S. Kalgaonkar, Z. Rahman, and K. H. Young. 2004. Differential effects of regulator of G protein signaling (RGS) proteins on serotonin 5-HTlA, 5-HT2A, and dopamine D2 receptor-mediated signaling and adenylyl cyclase activity. Cell. Signal. 16, 711-721 https://doi.org/10.1016/j.cellsig.2003.11.006
  14. Hague, C., L. S. Bernstein, S. Ramineni, Z. Chen, K. P. Minneman, and J. R. Hepler. 2005. Selective inhibition of alpha1A-adrenergic receptor signaling by RGS2 association with the receptor third intracellular loop. J. BioI. Chem. 280, 27289-27295 https://doi.org/10.1074/jbc.M502365200
  15. Han, J., M. D. Mark, X. Li, M. Xie, S. Waka, J. Rettig, and S. Herlitze. 2006. RGS2 detennines short-term synaptic plasticity in hippocampal neurons by regulating Gi/o-mediated inhibition of presynaptic Ca2+ channels. Neuron 51, 575-586 https://doi.org/10.1016/j.neuron.2006.07.012
  16. Hepler, J. R., D. M. Berman, A. G. Gilman, and T. Kozasa. 1997. RGS4 and GAIP are GTPase-activating proteins for Gq alpha and block activation of phospholipase C beta by gamma-thio-GTP-Gq alpha. Proc. Natl. Acad. Sci. USA 94, 428-432 https://doi.org/10.1073/pnas.94.2.428
  17. Heximer, S. P., S. P. Srinivasa, L. S. Bernstein, J. L. Bernard, M. E. Linder, J. R. Hepler, and K. J. Blumer. 1999. G protein selectivity is a detenninant of RGS2 function. J. BioI. Chem. 274, 34253-34259 https://doi.org/10.1074/jbc.274.48.34253
  18. Heximer, S. P., N. Watson, M. E. Linder, K. J. Blumer, and J. R. Hepler. 1997. RGS2/GOS8 is a selective inhibitor of Gqalpha function. Proc. Natl. Acad. Sci. USA 94, 14389-14393 https://doi.org/10.1073/pnas.94.26.14389
  19. Ho, B. Y., Y. Uezono, S. Takada, I. Takase, and F. Izumi. 1999. Coupling of the expressed cannabinoid CB1 and CB2 receptors to phospholipase C and G protein-coupled inwardly rectifying K+ channels. Receptors Channels. 6, 363-374
  20. Howlett, A. C. 2002. The cannabinoid receptors. Prostaglandins Other Lipid Mediat. 68-69, 619-631 https://doi.org/10.1016/S0090-6980(02)00060-6
  21. Howlett, A. C., F. Barth, T. I. Bonner, G. CabraL, P. Casellas, W. A. Devane, C. C. Felder, M. Herkenham, K. Mackie, B. R. Martin, R. Mechoulam, and R. G. Pertwee. 2002. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 54, 161-202 https://doi.org/10.1124/pr.54.2.161
  22. Huang, C., J. R. Hepler, A. G. Gilman, and S. M. Mumby. 1997. Attenuation of Gi-and Gq-mediated signaling by expression of RGS4 or GAIP in mammalian cells. Proc. Natl. Acad. Sci. USA 94, 6159-6163 https://doi.org/10.1073/pnas.94.12.6159
  23. Jan, T. Rand N. E. Kaminski. 2001. Role of mitogen-activated protein kinases in the differential regulation of interleukin-2 by cannabinol. J. Leukoc. BioI. 69, 841-849
  24. Koch, W. J., B. E. Hawes, L. F. Allen, and R. J. Lefkowitz. 1994. Direct evidence that Gi-coupled receptor stimulation of mitogen-activated protein kinase is mediated by G beta gamma activation of p21ras. Proc. Natl. Acad. Sci. USA 91, 12706-12710 https://doi.org/10.1073/pnas.91.26.12706
  25. Larminie, C., P. Murdock, J. P. Walhin, M. Duckworth, K. J. Blumer, M. A. Scheideler, and M. Garnier. 2004. Selective expression of regulators of G-protein signaling (RGS) in the human central nervous system. Brain Res. Mol. Brain Res. 122, 24-34 https://doi.org/10.1016/j.molbrainres.2003.11.014
  26. Lim, K. and C. B. Chae. 1989. A simple assay for DNA transfection by incubation of the cells in culture dishes with substrates for beta-galactosidase. Biotechniques 7, 576-579 https://doi.org/10.1038/nbt0689-576
  27. Matsuda, L. A., S. J. Lolait, M. J. Brownstein, A. C. Young, and T. I. Bonner. 1990. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561-564
  28. Munro, S., K. L. Thomas, and M. Abu-Shaar. 1993. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61-65 https://doi.org/10.1038/365061a0
  29. NeilL, J. D., L. W. Duck, J. C. Sellers, L. C. Musgrove, A. Scheschonka, K. M. Druey, and J. H Kehrl. 1997. Potential role for a regulator of G protein signaling (RGS3) in gonadotropin-releasing hormone (GnRH) stimulated desensitization. Endocrinology 138, 843-846 https://doi.org/10.1210/en.138.2.843
  30. Pertwee, R. G. 1997. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol. Ther. 74, 129-180 https://doi.org/10.1016/S0163-7258(97)82001-3
  31. Piomelli, D. 2005. The challenge of brain lipidomics. Prostaglandins Other Lipid Mediat 77, 23-34 https://doi.org/10.1016/j.prostaglandins.2004.09.006
  32. Powles, T., R. te Poele, J. Shamash, T. Chaplin, D. Propper, S. Joel T. Oliver, and W. M. Liu. 2005. Cannabis-induced cytotoxicity in leukemic cell lines: the role of the cannabinoid receptors and the MAPK pathway. Blood. 105, 1214-1221. Epub 2004 Sep. 1228
  33. Reif K. and J. G. Cyster. 2000. RGS molecule expression in murine B lymphocytes and ability to down-regulate chemotaxis to lymphoid chemokines. J. Immunol. 164, 4720-4729 https://doi.org/10.4049/jimmunol.164.9.4720
  34. Rhee, M. H., M. Bayewitch, T. Avidor-Reiss, R. Levy, and Z. Vogel. 1998. Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. J. Neurochem. 71, 1525-1534 https://doi.org/10.1046/j.1471-4159.1998.71041525.x
  35. Rhee, M. H., Z. Vogel J. Barg, M. Bayewitch, R. Levy, L. Hanus, A. Breuer, and R. Mechoulam. 1997. Cannabinol derivatives: binding to cannabinoid receptors and inhibition of adenylylcyclase. J. Med. Chem. 40, 3228-3233 https://doi.org/10.1021/jm970126f
  36. Ross, E. M. and T. M. Wilkie. 2000. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem. 69, 795-827 https://doi.org/10.1146/annurev.biochem.69.1.795
  37. Scheschonka, A., C.. W. Dessauer, S. Sinnarajah, P. Chidiac, C. S. Shi, and J. H Kehrl. 2000. RGS3 is a GTPase-activating protein for g(ialpha) and g(qalpha) and a potent inhibitor of signaling by GTPase-deficient forms of g(qalpha) and g(llalpha). Mol. Pharmacol. 58, 719-728
  38. Tosetti, P., N. Pathak, M. H. Jacob, and K. Dunlap. 2003. RGS3 mediates a calcium-dependent tennination of G protein signaling in sensory neurons. Proc. Natl. Acad. Sci. USA 100, 7337-7342. Epub 2003 May 7327 https://doi.org/10.1073/pnas.1231837100
  39. Wang, Q., M. Liu, B. Mullah, D. P. Siderovski, and R. R. Neubig. 2002. Receptor-selective effects of endogenous RGS3 and RGSS to regulate mitogen-activated protein kinase activation in rat vascular smooth muscle cells. J. BioI. Chem. 277, 24949-24958. Epub 22002 May 24942 https://doi.org/10.1074/jbc.M203802200
  40. Watson, N., M. E. Linder, K. M. Druey, J. H. Kehrl, and K. J. Blumer. 1996. RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. Nature 383, 172-175 https://doi.org/10.1038/383172a0
  41. Zhang, S., N. Watson, J. Zahner, J. N. Rottman, K. J. Blumer, and A. J. Muslin. 1998. RGS3 and RGS4 are GTPase activating proteins in the heart. J. Mol. Cell Cardiol. 30, 269-276 https://doi.org/10.1006/jmcc.1997.0591
  42. Zheng, B., Y. C. Ma, R. S. Ostrom, C. Lavoie, G. N. Gill, P. A. Insel X. Y. Huang, and M. G. Farquhar. 2001. RGS-PX1, a GAP for GalphaS and sorting nexin in vesicular trafficking. Science 294, 1939-1942 https://doi.org/10.1126/science.1064757