DOI QR코드

DOI QR Code

말 분변으로부터 mannanase를 분비하는 Bacillus amyloliquefaciens CS47의 분리 및 특성

Isolation and Characterization of Mannanase Producing Bacillus amyloliquefaciens CS47 from Horse Feces

  • 조수정 (진주산업대학교 미생물공학과)
  • Cho, Soo-Jeong (Department of Microbiological Engineering, Jinju National University)
  • 발행 : 2009.12.30

초록

진주산업대학교 농장에서 사육되고 있는 말에서 채취한 분변으로부터 mannanase 생성능이 우수한 균주를 분리하였으며 이를 CS47이라 명명하였다. 통성혐기성인 분리균 CS47의 최적 생육온도는 $38^{\circ}C$였으며 $20^{\circ}C$에서부터 $50^{\circ}C$까지 다양한 온도범위에서도 생육이 가능한 것으로 확인되었다. BIOLOG를 이용하여 분리균 CS47의 생화학적 특징을 분석한 결과, 분리균은 Bacillus amyloliquefaciens 균주와 유사한 특성을 나타내었으며 DNA G+C함량 (44mol%)도 B. amyloliquefaciens 균주의 범위(43.5-44.9)에 속하였다. 16S rDNA 염기서열을 분석한 결과에서도 분리균은 B. amyloliquefaciens FZB42 균주와 가장 높은 상동성을 나타내었으며 Bacillus속의 다른 균주들과는 93-98%의 상동성을 나타내었다. 그러나 분리균의 세포벽을 이루고 있는 주요 지방산[anteiso-15:0 (39.6%), 17:0 (7.6%), iso-15:0(37.8%)]은 Bacillus subtilis 균주와 유사한 특성을 나타내었다. 최종적으로 생화학적 특성과 16S rDNA 염기서열분석 결과를 근거로 하여 분리균 CS47은 Bacillus amyloliquefaciens CS47로 동정되었다. B. amyloliquefaciens CS47 균주가 분비하는 mannanase는 $50^{\circ}C$, pH 6.0에서 가장 높은 활성을 보였다.

The mannanase-producing bacteria, designated CS47, was isolated from the fresh feces of three horses (from a farm in Jinju National University). The isolate CS47 was facultatively anaerobic and grew at temperatures ranging from $20^{\circ}C$ to $50^{\circ}C$ with an optimal temperature of $38^{\circ}C$. The DNA G+C content of the isolate CS47 was 44 mlo%. The major fatty acids were anteiso-15:0 (39.6%), 17:0 (7.6%), and iso-15:0 (37.8%). The 16S rRNA gene sequence similarity between the isolate CS47 and other Bacillus strains varied from 93% to 98%. In the phylogenetic analysis based on these sequences, the isolate CS47 and Bacillus amyloliquefaciens clustered within a group and separated from other species of Bacillus. Based on the physiological and molecular properties, the isolate CS47 was classified within the genus Bacillus as Bacillus amyloliquefaciens CS47. The optimal pH and temperature for mannanase activity of B. amyloliquefaciens CS47 were pH 6.0 and $50^{\circ}C$, respectively. The thermal stability of mannanase from B. amyloliquefaciens CS47 is valuable when using this enzyme in industrial application.

키워드

참고문헌

  1. Admark, P., A. varga, J. Medve, V. Harjunpaa, T. rakenberg, and F. Tjerneld. 1998. Softwood hemicellulose- degrading enzymes from Aspergillus niger: purification and properties of a $\beta$-mannanase. J. Biotechnol. 63, 199-210 https://doi.org/10.1016/S0168-1656(98)00086-8
  2. Akino, T., N. Nakamura, and K. Horikoshi. 1987. Production of $\beta$-mannosidase and $\beta$-mannanase by an alkalophilic Bacillus sp. Appl. Microbiol. Biotechnol. 26, 323-327
  3. Argenzio, R A, M. Southworth, and C. E. Stevens. 1974. Sites of organic acid production and absorption in the equine gastrointestinal tract. Am. J. Physiol. 226, 1043-1050 https://doi.org/10.1016/0300-9629(80)90204-2
  4. Arisan-Atac, I., R Hodits, D. Kristufek and C. P. Kubicek. 1993. Purification and characterization of a $\beta$-mannanase of Trichoderma reesei C-30m. Appl. Microbiol. Biotechnol. 39, 58-62 https://doi.org/10.1007/BF00166849
  5. Claus, D. and R C. W. Berkeley. 1986. In Bergey's Manual of Systematic Bacteriology pp. 1105-1139, Vol. 2, Williame & Wilkins
  6. Cummings, J. H. and G. T. Macfarlane. 1997. Role of intestinal bacteria in nutrient metabolism. J. Parenter. Enter. Nutr. 21, 357-365 https://doi.org/10.1177/0148607197021006357
  7. Ethier, N., G. Talbot, and J. Sygusch. 1998. Gene cloning, DNA sequencing, and expression of thermostable $\beta$mannanase from Bacillus stearothermophilus. Appl. Environ. Microbiol. 64, 4428-4432
  8. Ferreira, H. M. and E. X. F. Filho. 2004. Purification and characterization of a $\beta$-mannanase from Trichoderma harzianum strain T4. Carbohydr. Polymer. 57, 23-29 https://doi.org/10.1016/j.carbpol.2004.02.010
  9. Garret, L. A, R Brown, and I. R Poxton. 2002. A comparative study of the intestinal micro biota of healthy horses and those suffering from equine grass sickness. Vet. Microbiol. 87, 81-88 https://doi.org/10.1016/S0378-1135(02)00018-4
  10. Khanongnuch, c., K. Asada, H. Tsuruga, T. Ooi, S. Kinoshita, and S. Lumyong. 1998. $\beta$-Mannanase and xylanase of Bacillus subtilis 5H active for bleaching of crude pulp. J. Ferment. Bioeng. 86, 461-466 https://doi.org/10.1016/S0922-338X(98)80152-9
  11. Kurakake, M. and T. Komaki. 2001. Production of $\beta$mannanase and $\beta$-mannosidase from Aspergillus awamori K4 and their properties. Curro Microbiol. 42, 377-380 https://doi.org/10.1007/s002840010233
  12. Logan, N. A and R C. Berkeley. 1984. Identification of Bacillus strains using the API system. J. Gen. Microbiol. 130, 1871-1882 https://doi.org/10.1099/00221287-130-7-1871
  13. Mandel M. and J. Marmur. 1968. Use of ultraviolet absorbance- temperature profile for determining the guanine plus cytosine content of DNA Methods Enzymol. 12B, 195-206
  14. McCleary, B. V. 1988. $\beta$-mannanase, pp. 596-610, In Wood, W. A and S. T. Kellogg (eds.), Methods in Enzymology, Vol. 160, Academic Press Inc., New York
  15. Mendoza, N. S., M. Arai, K. Sugimoto, M. Ueda, T. Kawaguchi, and 1. M. Joson. 1995. Cloning and sequencing of $\beta$-mannanase gene from Bacillus subtilis NM-39. Biochim. Biophys. Acta. 1243, 552-554 https://doi.org/10.1016/0304-4165(95)00011-Y
  16. Mendoza, N. S., M. Arai, T. Kawaguchi, F. S. CuboL E. G. Panerio, and T. Yoshida. 1994. Isolation of mannan-utilizing bacteria and the culture conditions for mannanase production. World J. Microbiol. Biotechnol. 10, 51-54 https://doi.org/10.1007/BF00357563
  17. Mendoza, N. S., M. Arai, T. Kawaguchi, T. Yoshida, and Journal of Life Science 2009, Vol. 19. No.12 1729 L. M. Joson. 1994. Purification and properties of mannanase from Bacillus subtilis. World J. Microbiol. Biotechnol. 10, 551-555 https://doi.org/10.1007/BF00367665
  18. Miller. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry 31, 426-428 https://doi.org/10.1021/ac60147a030
  19. Ooi, T. and D. Kikuchi. 1995. Purification and some properties of $\beta$-mannanase from Bacillus sp. World J. Microbiol. Biotechnol. 11, 310-314 https://doi.org/10.1007/BF00367106
  20. Petty, L. A, S. D. Carter, B. W. Senne, and J. A Shriver. 2002. Effects of $\beta$-mannanase addition to corn-soybean meal diets on growth performance, carcass traits, and nutrient digestibility of weaning and growing-finishing pig. J. Anim. Sci. 80, 1012-1019
  21. Sachslehner A and D. Haltrich. 1999. Purification and some properties of a thermostable acidic endo-$\beta$-lA-d-mannanase from Sclerotium (Athelia) rolfsii. FEMS Microbiol. Lett. 177, 47-55
  22. Schaeffer, P., J. Millet, and J. P. Aubert. 1965. Catabolic repression of bacterial sporulation. Proc. Natl. A cad. Sci. USA 54, 704-711 https://doi.org/10.1073/pnas.54.3.704
  23. Slominski, B. A, X. Meng, 1. D. Campbell, W. Guenter, and O. Jones. 2006. The use of enzyme technology for improved energy utilization from full-fat oilseeds. Part II: Flaxseed. Poult. Sci. 85, 1031-1037 https://doi.org/10.1093/ps/85.6.1031
  24. Stevens, C. E. and I. D. Hume. 1998. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol. Rev. 78, 393-421
  25. Takahashi, R, I. Kusakabe, H. Kobayashi, K. Murakami, A Maekawa, and T. Suzuki. 1984. Purification and some properties of mannanase from Streptomyces sp. Agri. BioI. Chem. 48, 2189-2195 https://doi.org/10.1271/bbb1961.48.2189
  26. Wozniewski, T., W. Blaschek, and G. Franz. 1992. Isolation and characterization of an endo-$\beta$-mannanase of Lilium testaceum bulbs. Phytochemistry 31, 3365-3370 https://doi.org/10.1016/0031-9422(92)83687-T
  27. Yamaura, I. and T. Matsumoto. 1993. Purification and some properties of endo-1A-$\beta$-D-mannanase from a mud snaiL Pomacea insularus (de Ordigny). Biosci. Biotechnol. Biochem. 57, 1316-1319 https://doi.org/10.1271/bbb.57.1316
  28. Yoon, K. H. and B. L. Lim. 2007. Cloning and strong expression of a Bacillus subtilis WL-3 mannanase gene in B. subtilis. J. Microbiol. Biotechnol. 17, 1688-1694
  29. Zakaria, M. M., S. Yamamoto, and T. Yagi. 1998. Purification and characterization of an endo-1A-$\beta$-mannanase from Bacillus subtilis KU-1. FEMS Microbiol. Lett. 158, 25-31
  30. Zhang, J., Z. M. He, and K. Hu. 2000. Purification and characterization of $\beta$-mannanase from Bacillus licheniformis for industrial use. Biotechnol. Lett. 22, 1375-1378 https://doi.org/10.1023/A:1005644414762
  31. Zou, X. T., X. J. Qiao, and Z. R Xu. 2006. Effect of $\beta$mannanase (Hemicell) on growth performance and immunity of broilers. Poult. Sci. 85, 2176-2179 https://doi.org/10.1093/ps/85.12.2176

피인용 문헌

  1. Production of Extracellular β-mannanase by Bacillus amyloliquefaciens on a Coconut Waste Substrate vol.16, pp.9, 2017, https://doi.org/10.3923/pjn.2017.700.707
  2. Effects of the Combinations of Cassava Leaf Meal and Palm Kernel Cake Mixture Fermented by Bacillus amyloliquefaciens on the Alteration of their Dry Matter, Crude Protein, Crude Fiber and Crude Lipid Contents vol.15, pp.12, 2016, https://doi.org/10.3923/pjn.2016.1049.1054
  3. A multi-tolerant low molecular weight mannanase from Bacillus sp. CSB39 and its compatibility as an industrial biocatalyst vol.92, 2016, https://doi.org/10.1016/j.enzmictec.2016.06.018
  4. Effect of the Dietary Supplementation of Fermented Spent Mushroom (Pleurotus eryngii) Substrates on the Growth Performance and Carcass Characteristics in Hanwoo Steers vol.21, pp.12, 2011, https://doi.org/10.5352/JLS.2011.21.12.1705
  5. Characterization of mannanase from Bacillus sp., a novel Codium fragile cell wall-degrading bacterium 2017, https://doi.org/10.1007/s10068-017-0210-3
  6. Fermentation of Blood Meal with Bacillus amyloliquefaciens as Broiler Feeding vol.11, pp.12, 2016, https://doi.org/10.3923/ajava.2016.840.846
  7. Effects of Amino Acid Composition in a Bacillus amyloliquefaciens-fermented Mixture of Bovine Blood and Coconut Pulp on Growth Performance, Blood Cholesterol of Broilers vol.16, pp.7, 2017, https://doi.org/10.3923/ijps.2017.274.280
  8. Isolation and Characterization of Mannanase-producing Bacillus cereus Isolated from the Hindgut of Termites vol.17, pp.3, 2018, https://doi.org/10.3923/pjn.2018.116.123