DOI QR코드

DOI QR Code

필수 지방산 조성이 다른 식이의 docosahexaenoic acid 투여가 흰쥐 뇌 및 간의 지방산 조성에 미치는 영향

Effect of Treatment with Docosahexaenoic Acid into N-3 Fatty Acid Deficient and Adequate Diets on Rat Brain and Liver Fatty Acid Composition

  • 임선영 (한국해양대학교 해양환경생명과학부)
  • Lim, Sun-Young (Division of Marine Environment & Bioscience, Korea Maritime University)
  • 발행 : 2009.10.30

초록

선행된 연구에서 나타난 n-3 지방산 결핍 식이에 DHA 첨가는 뇌 기능 개선효과가 나타났으나 n-3 지방산이 적절히 함유된 식이에 DHA 첨가는 유의적 뇌 기능 향상효과가 나타나지 않았다. 이러한 결과에 대한 설명으로 본 연구에서는 필수 지방산 함량이 다른 식이, 즉 n-3 지방산 결핍 및 적절군에 각각 DHA를 첨가하여 뇌 및 간의 지방산 조성에 미치는 영향에 대하여 검토하였다. N-3 지방산이 결핍된 식이군(Def)의 체중 및 뇌의 무게는 DHA를 첨가한 식이군(Def+DHA)이나 n-3 지방산이 적절히 함유된 식이군(Adq) 및 DHA 첨가군(Adq+DHA)에 비해 유의적으로 높았다(p<0.05). 뇌의 지방산 조성 결과에서 n-6계 지방산들 중 특히 22:5n-6의 함량이 n-3 지방산 결핍군(Def)에서 현저히 높았으며 20:4n-6 및 22:4n-6의 함량도 이 식이군(Def)에서 높았으나 18:2n-6 및 20:3n-6의 함량은 낮았다(p<0.05). 총 n-3계 지방산 및 22:6n-3의 함량은 예상했듯이 n-3 지방산 결핍군(Def)에서 가장 낮았으며 다른 식이군들과 비교했을 때 약 64% 감소됨을 살펴볼 수가 있었다. 또한 n-6/n-3의 비도 n-3 지방산 결핍군(Def)에서 3.35로 식이군들 중 유의적으로 높았다(p<0.05). 흥미로운 것은 n-3 지방산 결핍에 DHA를 첨가한 식이군(Def+DHA)의 경우, 뇌의 22:6n-3 함량이 13.1%로 n-3 지방산 적절군(Adq) 및 DHA 첨가군(Adq+DHA)과 유의적 차이가 없었다. 간의 지방산 조성 결과에서 뇌의 지방산 조성과 유사하게 n-6 지방산들 중 특히 22:5n-6의 함량이 n-3 지방산 결핍군(Def)에서 현저히 높았으며(p<0.05), n-3 적절군(Adq)의 경우, DHA 첨가군(Adq+DHA)과 비교했을 때 대부분의 n-6계 지방산의 함량이 유의적으로 높았다(p<0.05). N-3 결핍군에 DHA의 첨가군(Def+DHA)은 총 n-3계 지방산 및 22:6n-3의 함량이 n-3 결핍군(Def)에 비해 현저히 높았다(p<0.05). 특히 이 식이군(Def)의 22:6n-6의 함량은 n-3 적절군(Adq) 및 DHA 첨가군(Adq+DHA)보다 더 높은 수치를 나타내었다. 또한 n-3 지방산이 결핍된 동물(Def)의 간에서 18:3n-3의 함량을 거의 찾을 수가 없었으나 DHA 첨가군(Def+DHA)의 경우 가장 높은 함량을 나타내었다. 이는 n-3 지방산 결핍군(Def)의 경우 거의 모든 18:3n-3가 생체 내에서 고도로 불포화된 지방산으로 전환되기 위해 사용된 것으로 사료된다. 따라서 본 연구의 결과로부터 n-3 지방산이 결핍된 군의 경우 DHA 첨가로 인하여 뇌 DHA 함량 증가와 더불어 뇌 기능이 개선되었음을 살펴 볼수가 있었다. 반면 이미 뇌의 DHA가 포화상태인 n-3 지방산이 적절히 함유된 식이의 경우 DHA의 부가적인 첨가는 뇌기능 향상면에서는 유의적 효과가 나타내지 않았음을 뇌의 지방산 조성으로 확인 할 수가 있었다.

Previous studies have suggested that docosahexaenoic acid (DHA) supplementation into n-3 fatty acid deficient diet improved spatial learning performance, but there was no significant difference in brain related function when DHA was added into a n-3 fatty acid adequate diet. Here, we investigated the effect of adding DHA into an n-3 fatty acid deficient or adequate diet on brain and liver fatty acid composition. On the second day after conception, Sprague Dawley strain dams were divided into four groups as follows; n-3 fatty acid deficient (Def), n-3 fatty acid deficient plus DHA (Def+DHA, 10.2% DHA), n-3 fatty acid adequate (Adq, 3.4% linolenic acid), and n-3 fatty acid adequate plus DHA (Adq+DHA, 3.31% linolenic acid plus 9.65% DHA). After weaning, male pups were fed on the same diets of their respective dams until adulthood. In brain fatty acid composition, the Def group showed a lower brain DHA (64% decrease), which was largely compensated for by an increase in docosapentaenoic acid (22:5n-6). Brain DHA in the Def+DHA group was increased to almost the same extent as in the Adq and Adq+DHA groups and there were no significant differences among them. Liver fatty acid composition showed a similar pattern to that of the brain, but liver DHA in the Def+DHA showed the highest percentage among the diet groups. In conclusion, n-3 fatty acid deficiency from gestation to adulthood leads to decreased brain DHA, which has been shown to be highly associated with poor spatial leaning performance. Thus, adequate brain DHA levels are required for optimal nervous function.

키워드

참고문헌

  1. Agostoni, C, S. trojan, R. Bellu, E. Riva, and M. giovannini. 1995. Neurodevelopmental quotient of healthy term infants at 4 months and feeding practice: the role of long-chain polyunsaturated fatty acids. Pediatr. Res. 38, 262-266 https://doi.org/10.1203/00006450-199508000-00021
  2. Bourre, J. M., M. Francois, A Youyou, O. Dumomt, M. Piciotti, G. Pascal, and G. Durand. 1989. The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysical parameters, resistance to poisons and performance of learning tasks in rats. J. Nutr. 119, 1880-1892
  3. Carlson, S. E., S. H. Werkman, P. G. rhodes, and E. A Tolley. 1993. Visual-acuity development in healthy preterm infants: effect of marine-oil supplementation. Am. J. Clin. Nutr. 58, 35-42
  4. Connor, W. E. and M. Neuringer. 1988. The effect of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of brain and retina. pp. 275-294, In Karnovsky M. L., A Leaf, and L. C Bolls (eds.), Biological Membranes: Aberrations in Membrane Structure and Function, Liss Inc., New York
  5. Crawford, M. A, A G. Hassan, and G. Williams. 1976. Essential fatty acids and fetal brain growth. Lancet 1, 452-453 https://doi.org/10.1016/S0140-6736(02)95361-4
  6. Farquharson, J., F. Cockburn, W. J. Patrick, E. C Jamieson, and R. W. Logan. 1992. Infant cerebral cortex phospholipids fatty-acid composition and diet. Lancet 340, 810-813 https://doi.org/10.1016/0140-6736(92)92684-8
  7. Folch, J., M. Lees, and G. Sloane-Stanley. 1957. A simple method for the isolation and purification of total lipid from boron fluoride-methanol. J. BioI. Chern. 226, 495-509
  8. Green, P. and E. Yavin. 1998. Mechanisms of docosahexaenoic acid accretion in the fetal brain. J. Neurosci. Res. 52, 129-136 https://doi.org/10.1002/(SICI)1097-4547(19980415)52:2<129::AID-JNR1>3.0.CO;2-C
  9. Greiner, R. S., T. Moriguchi, B. M. Slotnick, A Hurron, and N. Salem. 2001. Olfactory discrimination deficits in n-3 fatty acid-deficient rats. Physiol. Behav. 72, 379-385 https://doi.org/10.1016/S0031-9384(00)00437-6
  10. Holman, R. T. 1968. Essential fatty acid deficiency. Prog. Chern. Fats Other Lipids 9, 275-348 https://doi.org/10.1016/0079-6832(71)90030-9
  11. Jamieson, E. C, J. Farquharson, R. W. Logan, A G. Howatson, W. J. Patrick, and F. Cockburn. 1999. Infant cerebellar gray and white matter fatty acids in related to age and diet. Lipids 34, 1065-1071 https://doi.org/10.1007/s11745-999-0458-5
  12. Lamptey, M. S. and B. L. Walker. 1976. A possible essential role for dietary linolenic acid in the depelopment of the young rat. J. Nutr. 106, 86-93
  13. Lim, S. Y. 2007. Effect of supplementation with docosahexaenoic acid from gestation to adulthood on spatial learning performance in rat. J. Life Sci. 17, 1400-1405
  14. Lim, S. Y. 2007. Effect of treatment with docosahexzenoic acid into n-3 fatty acid adequate diet on learning related brain function in rat. J. life Sci. 19, 917-922
  15. Lim, S. Y., J. Hoshiba, and N. Salem. 2005. An extraordinary degree of structural specificity is required in neural phospholipids for optimal brain function: n-6 docosapentaenoic acid substitution for docosahexaenoic acid leads to a loss in spatial task performance. J. Neurochem. 95, 848-857 https://doi.org/10.1111/j.1471-4159.2005.03427.x
  16. Makrides, M., M. A. Neumann, R. W. byard, K. Simmer, and R. A. Gibson. 1994. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am. J. Clin. Nutr. 60, 189-194
  17. Morrison, W. R. and L. M. smith. 1959. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron-fluoride-methanol. J. Lipid Res. 5, 600-608
  18. Moriguchi, T., J. Loewke, M. Garrison, J. N. Catalan, and N. Salem. 2001. Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. J. Lipid Res. 42, 419-427
  19. Moriguchi, T. and N. Salem. 2003. Recovery of brain docosahexaenoate leads to recovery of spatial task performance. J. Neurochem. 87, 297-309 https://doi.org/10.1046/j.1471-4159.2003.01966.x
  20. Moriguchi, T., R. Greiner, and N. Salem. 2000. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J. Neurochem. 75, 2563-2573 https://doi.org/10.1046/j.1471-4159.2000.0752563.x
  21. Neuringer, M., W. E. Connor, C. V. Petten, and L. Barstad. 1984. Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J. Clin. Invest. 73, 272-276 https://doi.org/10.1172/JCI111202
  22. Neuringer, M., W. E. Connor, D. S. Lin, L. Barstad, and S. Luck. 1986. Biochemical and functional effects of prenatal and postnatal omega-3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc. Natl. A cad. Sci. USA 83, 4021-4025 https://doi.org/10.1073/pnas.83.11.4021
  23. Pawlosky, R. L Y. Denkins, G Ward, and N. Salem. 1997. Retinal and brain accretion of long-chain polyunsaturated fatty acids in developing felines: the effects of corn oil-based maternal diets. Am. J. Clin. Nutr. 65, 465-472
  24. Pudelkewicz, c., J. Seufert, and R. T. Holman. 1968. Requirements of the female rat for linoleic and linolenic acids. J. Nutr. 94, 138-146
  25. Reeves, P. G, F. H. Neilsen, and G C. Fahey. 1993. Committee report on the AIN-93 purified rodent diet. J. Nutr. 123, 1939-1951
  26. Salem, N., M. Reyzer, and J. Karanian. 1996. Losses of arachidonic acid in rat liver after inhalation. Lipids 31, S153-156 https://doi.org/10.1007/BF02637068
  27. Sastry, P. 1985. Lipids of nervous tissue: Composition and metabolism. Prog. Lipid Res. 24, 69-176 https://doi.org/10.1016/0163-7827(85)90011-6
  28. Sinclair, A. J. 1975. Incorporation of radioactive polyunsaturated fatty acids into liver and brain of developing rat. Lipids 10, 120-123
  29. Wheeler, T. G, R. M. Benolken, and R. E. Anderson. 1975. Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Sci. 188, 1312 https://doi.org/10.1126/science.1145197
  30. Willatts, P., J. S. Forsyth, M. K. DiModugno, S. Varma, and M. Colvin. 1998. Influence of long-chain polyunsaturated fatty acids on infant cognitive function. Lipids 33, 973-980 https://doi.org/10.1007/s11745-998-0294-7
  31. Yamamoto, N., M. Saitoh, A. Moriguchi, M. Nomura, and H. Okuyama. 1987. Effect of dietary alpha-linolenate/linoleate balance on brain lipid compositions and learning ability of rats. J. Lipid Res. 33, 973-980

피인용 문헌

  1. Comparison of Fatty Acid Composition of Hanwoo Beef by Different Quality Grades and Cuts vol.30, pp.1, 2010, https://doi.org/10.5851/kosfa.2010.30.1.110