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DOUBLY SIMULATIVE WFI-ALGEBRAS
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ABSTRACT. Characterizations of simulative WFI-algebras are provided.
The notion of commutators, doubly simulative parts, doubly simulative
WFI-algebras, and WFI-morphisms are introduced. Using the notion of
commutators, the conditions for a WFI-algebra to be simulative are given.
Characterizations of doubly simulative WFI-algebras are discussed. Using
the notion of doubly simulative WFI-algebras, a commutative pomonoid is
established.

AMS Mathematics Subject Classification: 03G25, 03C05, 08A05.
Key words and Phrases : (doubly) simulative part, (doubly) simulative
WFTI-algebra, commutator, WFI-morphism.

1. Introduction

In 1990, W. M. Wu [7] introduced the notion of fuzzy implication algebras
(FI-algebra, for short), and investigated several properties. In [6], Z. Li and
C. Zheng introduced the notion of distributive (resp. regular, commutative)
Fl-algebras, and investigated the relations between such Fl-algebras and MV-
algebras. In [1], the first author discussed several aspects of WFI-algebras. He
introduced the notion of associative (resp. normal, medial) WFI-algebras, and
investigated several properties. He gave conditions for a WFI-algebra to be
associative/medial, and provided characterizations of associative/medial WFI-
algebras, and showed that every associative WFI-algebra is a group in which
every element is an involution. He also verified that the class of all medial
WFI-algebras is a variety. Y. B. Jun and S. Z. Song [5] introduced the notions
of simulative and/or mutant WFI-algebras and investigated some properties.
They established characterizations of a simulative WFI-algebra, and gave a re-
lation between an associative WFI-algebra and a simulative WFI-algebra. They
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also found some types for a simulative WFI-algebra to be mutant. Jun et al. [4]
introduced the concept of ideals of WFI-algebras, and gave relations between a
filter and an ideal. Moreover, they provided characterizations of an ideal, and
established an extension property for an ideal. In [2] and {3}, the first author
discussed perfect, weak and concrete filters. In this paper, we give characteri-
zations of simulative WFI-algebras. We introduce the notion of commutators,
doubly simulative parts, doubly simulative WFI-algebras, and WFI-morphisms.
Using the notion of commutators, we give conditions for a WFI-algebra to be
simulative. We discuss characterizations of doubly simulative WFI-algebras, and
we establish a commutative pomonoid by using the notion of doubly simulative
WFI-algebras.

2. Preliminaries

Let K(7) be the class of all algebras of type 7 = (2,0). By a WFI-algebra we
mean & system X := (X,8,1) € K{(r) in which the following axioms hold:

(al) (z € X) (zox=1),

(a2) (z,ye X) (zoy=yor=1=2=Y),

(@3) (z,y,z2€X) (z0(yo2)=Yy0 (z672),

(a4) (z,y,2€ X) (zoy) 0 (WO 2)0(r62) =1).
We call the special element 1 the unit. For the convenience of notation, we shall
write [2,91,Y2,+ ,¥n] fOr (- (£ S 41) O %) © ) © yu. We define [z,y]" =
Iz, 9,9,- -+, y], for n > 2, where y occurs n-times. We use the notation z" ©y
instead of z©& (---(z © (z ©y))---) in which 2 occurs n-times.

Proposition 2.1. [1] In a WFI-algebra X, the following are true:
(b1) z© [z,4]* =1,
b2y lez=1=z=1,
(b3) 1oz ==,
(bd) zoy=1=[y,2,20z2]=1&[2z,26Yy =1,
(b5) |z,9,1] = [z,1,y0 1],
(b6) [z,4* =z ©y.

A WFI-algebra X is said to be normal (see [1]) if it satisfies:
‘ VaeX)(Xoa=X=a0X).

A nonempty subset S of a WFI-algebra X is called a subalgebraof X if z0y € §
whenever z,y € S. A nonempty subset F' of a WFL-algebra X is called a filter
of X if it satisfies:

(c1) 1eF,

(c2) VzeF)(VyeX)(z0yeF = ye F).
A filter F of a WFI-algebra X is said to be closed [1] if F' is also a subalgebra of
X. ‘
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Proposition 2.2. [1] Let F be a filter of a WFI-algebra X. Then F is closed if
and only if t©1 € F forallz € F.

Proposition 2.3. [1] In a finite WFI-algebra, every filter is closed.

We now define a relation “<” on X by ¢ < y ifand onlyifz oy =1. It is
easy to verify that a WFI-algebra is a partially ordered set with respect to =.

3. Simulative WFI-algebras

In what follows, let X denote a WFI-algebra unless otherwise specified. For
a WFT-algebra X, the set

S(X):={zeX|z=<1}

is called the simulative part of X. A WFI-algebra X is said to be simulative [5]
if it satisfies

S)z=xl=>z=1
Note that the condition (S) is equivalent to S(X) = {1}.

Lemma 3.1. [5] The following assertions are equivalent:
(i) % is simulative.

(i) (Vz € X) ([z,1,1] = z).

(iif) (Vz,y € X) ([z, 1, 9] = [y, L, 2]).
(iv) (Vz,y € X) ([z,y,1] =y O 2).
(v) (Vz,y € X) ([z,y,9] = ).

Proposition 3.2. Every simulative WFI-algebra X satisfies the following asser-
tion:

(Vz,y,2€ X)(z0 (y© 2) =[7,1,,2])
Proof. Using (a3) and Lemma 3.1, we have

20 (yez) =lzLleyoz) =yo (1162
=y0lzLzol] = [5lyo (o)
=yo(xoel),l,z]=[yzelljoz
=(zel)ey)oz = [x,1,y2]

This completes the proof. O

We provide characterizations of a simulative WFI-algebra.

Theorem 3.3. A WFI-algebra X is simulative if and only if it satisfies the
following assertion:

(any’z € X) (['T7y’ z] = [Z’y7 :L‘]) (3'1)
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Proof. Assume that X is simulative and let z,y, 2 € X. Then
[17) Y, Z} = {y,l‘» 1, Z] = [Z, Lye ZE]
yo |z, 1,z] = yo 1,2
[z,1,yez2] = [y,2,1,7]
= {27 Y, x]’
which proves (3.1). Conversely, suppose (3.1) is valid. fweput y =2 =11in
(8.1), then [z,1,1] = z for all z € X. Hence X is simulative by Lemma 3.1. [

i

Theorem 3.4. A WFI-algebra X is simulative if and only if it satisfies the
following assertion:

(Vz,y,2 € X) (z©(y© 2) = [2, [, 1,9], 1)) (3.2)
Proof. Assume that X is simulative. Using Lemma 3.1 and Proposition 3.2, we
havex © (y9z2) = (z,1,y,2]=[z,,y]© 2z = [2,{z,1,y],1]. Hweput z =y = 1
in (3.2), then [2,1,1] = z for all z € X. It follows from Lemma 3.1 that X is
simulative. 0

For any a,b € X, consider the set L(a,b) == {z € X |ae (boz) =1}

Theorem 3.5. If X is simulative, then there exists the least element in L{a,b),
and it is [a,1,b]. Moreover, L(a,b) = {[a, 1,b]}.

Proof. Using Proposition 3.2, we have a © (b & [a,1,b]) = [a,1,b,]a,1,b]] = 1,
and so [a, 1,b] € L{a,b). Now let y € L(a,b). Then 1 = a& (bOy) = [a,1,b,y] by
Proposition 3.2. Thus [a, 1, 5] X y, which proves that [a, 1, b] is the least element
of L(a,b). On the other hand, if y € L(a,b), then 1 =a 6 (b0 y) = [y, [a,1,],1]
by Theorem 3.4, ie., y © [a,1,b] < 1. It follows that y © [a,1,b] € S(X) =
{1} since X is simulative. Hence y < [a,1,8], and therefore y = [a, 1,b]. Thus
L(aa b) = {[asl’b}}' O

Defitinition 3.6. The element of the form [z, y, y © z] is called a commutator
of X and is denoted by C(z, y).

Denote by C(X) the set of all commutators of ¥, i.e.,
Cx) ={C(z,y) | z,y € X}

Example 3.7. Let X = {1,a,b,c} be a set with the following Cayley table.

oll a b ¢
111 a b ¢
ale 1 a b
bib ¢ 1 a
cla b ¢ 1

Then X := (X, ©,1) is a WFI-algebra, and C(X) = {1, b}.



Doubly simulative WFI-algebras 379

Theorem 3.8. A WFI-algebra X is simulative if and only if for every a,b € X,
the commutator C(a,b) of X is the unique solution of the following equation:

z0(bea)=asb (3.3)

Proof. Suppose that X is simulative. Then (X, -,1) is a commutative group (see
[5]). Hence
o (bea)=acbe= - bt a)=a"1b
e r=(a"1-b"1)"1. (b7 . a) = [a,b,60a] = C(a,b).
This proves that C{a, b) is the unique solution of the equation (3.3). Conversely,
assume that

Cla,b)o(boa)=a6b (3.4)
foralla,be X. Leta=1and be S(X). Thenb=10b=C({L,b)o(bsl)=1,
and so §(X) = {1}. Hence X is simulative. U

Theorem 3.9. If X satisfies the following identity
(Vz,y € X) (C(z,y) =z O y), (3.5)
then X is simulative.
Proof. Let b€ S(X). Then b1 =1, and so
b=18b=[116b=C{1)=bcl=1
Hence S(X) = {1}, which proves that X is simulative. ]

Example 3.10. Let X = {1, q,b} be a set with the following Cayley table.

Then X = (X,6,1) is a WFI-algebra in which (3.5) is valid. Hence X is a
simulative WFI-algebra.

Proposition 3.11. In a simulative WEI-algebra X, the following holds:
(Ve,ye X)(zoy=2 < [z,1,z]=1y).
Proof. Let z,y € X be such that z ©y = 2. Then yOz =y (z0y) =

r© (y©Oy) = z© 1, which implies that [z,1,2z] = [y, z,z] = y. Conversely,
suppose that [z,1,z] =y for all z,y € X. Then

zoy=26[zl,2]=[z,1l,z0z]=[z,1,1]=2.
This completes the proof. g
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4. Doubly simulative WFI-algebras

Defitinition 4.1. For ¢ € X, the set
DSo(X) :={zx € X | [z,a]* = z}

is called the doubly simulative part of X with respect to a (briefly, a-doubly
simulative part of X).

Proposition 4.2. For anya,z € X, we have 1,a, 26a € DS4(X) and DS, (X) =
Xsa.

Proof. Straightforward. O

Theorem 4.3. For a € X, the a-doubly simulative part of X is a subalgebra of
x.

Proof. Let z,y € DS,. Then [z,a}? = z and [y, a]? = y. Note that
z,y,[z0y,0]"] = 1
by (bl). Using (23) and (b6), we have

zoy,a?o(zoy) =z0(z0ya?0y) =z (zoyd?e(yad?)
=z0ya[z0ya’] =26y 0,2,y 4]
= 379[17,3/,{ ,G’]2] = 359[93,?/]2 = 1.

Hence [0y, a)? = 70y, i.e., 20y € DS,(X). Therefore DS, (X) is a subalgebra
of X. O

Defitinition 4.4. For any a € X, if DS,(%X) = X, then X is called an a-doubly
stmulative WFI-algebra.

Example 4.5. Let X = {1,0,b, ¢} be a set with the following Cayley table.

6|1 a b ¢
111 a b ¢
aj{l 1 ¢ ¢
bie ¢ 1 1
cie b a 1

Then X := (X, 6, 1) is an a-doubly simulative WFI-algebra. Note that DS, (%)
{1,¢} # X. Hence X is not a c-doubly simulative WFI-algebra.

Proposition 4.6. The 1-doubly simulative part of X is contained in the a-
doubly simulative part of X for all a € X.
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Proof. Let a € X and z € DS1(X). Then
r=[2,1>=[z,620a,1] = [a,7 O a,1] € DS, (X).
Hence DS1(X) C DSy (%) for all a € X. a

The following is a characterization of doubly simulative WFI-algebras.

Theorem 4.7. For any a € X, the following assertions are equivalent.

(i) X is an a-doubly simulative.
(i) (Vz,y € X) ([z,0,9] = [y, 0,2]).
(iii) (Vz,y € X) [z,0,ySa]l =y O x).

Proof. (i) = (ii). Let z,y € X. Since DS,(X) = X, we have [z,a]® = = and
[y7 a’]2 = y. Hence [y7 a, x] = [ya a, [ZL’, (1,]2] = [CB, a, [y’ a]2] = [IL‘, a, y]a which proves
(i)

(ii) = (iii). Assume that (ii) is valid and let z,y € X. Then

z=16z=a,a,2]=[z,0a,q]

and so y O =y S [x,a,a] = [z,a,y © a]. This proves (iii).

(iii) = (i). Suppose (iii) is valid. For any z € X, we get

r=10z=[z,a,18d] = [z,a]*.

Thus = € DS, (X). This completes the proof. O

Theorem 4.8. For any a € X, we have
DS1(X) = DS, (X) < a € DS1(%). (4.1)

Proof. Since a € DS,(X), the necessity is clear. Assume that a € DS1(X). For
every x € X, we have

t0a=z0a,1?=[e,1,z01] = [a,z,1] € DS1(X)

by (a3), (b5) and (b6). This shows that DS,(X) = X © a C DSi(X). This
completes the proof. O

Theorem 4.9. The following assertions are equivalent.

(i) X is a normal WFI-algebra.
(i) DS1(%X) = X.

Proof. (i) = (ii). Straightforward.
(ii) = (i). Suppose DS1(X) = X. Then X © a = DS (%) = DS1(X) = X for
all a € X. On the other hand,
t=a' (a-x)=aS(a-z)=aO[z,l,al€a X
for all a € DS1(X) = X. Hence X is a normal WFI-algebra. O
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Corollary 4.10. In e normal WFI-algebra X, we have
(Va € X) (DS (%) = DS1(%)).

Proposition 4.11. Let X be an a-doubly simulative WFI-algebra for an element
a in the simulative part of X. Then the following assertions are valid.
(i) (Vz,y € X) (Iz,9,0] 2y ©2).
(ii) (Vz,9,2 € X) ([z,0,y,2] Sz 6 (y© 2)).
(iii) (Vz,y,2 € X) ([z[z,a,9],0]l 220 (y © 2)).
(iv) (Vz,y € X) ([a,z,9] 2z ©Y).
(v) (Vz,y € X) ([a,z,a0y] 2 a0 (z0Y)).

Proof. Since a € §(%), we get

1 =a0l=0a0@yoy =y6(aoy)

< yo[re,z0y =yo(zoy,a,7]

= [z,y,a]|© (y © ),
and so [z,y,a]© (y©z) =1, ie, [z,y,a] X y© z. Thus (i) is valid. Using (i),
we have (y,2 © a,a] < [z,a,y]. It follows from (a3), (b4) and Theorem 4.7 that

[z,a,y,z} = {ye(xea),a,z} = {z,a,ye(xea)}

YO [z,0,20a] = yo (zS2)
=z0(yoz),

If

which proves (ii).
(iii) is an immediate consequence of (i) and (ii). Using (b3) and (ii), we have
la,z,9]=[La,z,9] <16 (z0Yy) =20Y
for all z,y € X. Hence (iv) is valid. Finally, if we use (b4) and (iv), then
[a,2,a0y] =aOSa,z,y] Za0 (zOY)
for all z,y € X, which proves (v). O

Theorem 4.12. Let X be an a-doubly simulative WFI-algebra for a € X. If we
define a binary operation + on X by

(Vz,y € X) (z +y = [y, 0,2]),

then X is a commutative pomonoid.

Proof. The commutativity of 4+ follows from Theorem 4.7(ii). For any z,y,z €
X, we have
z+(y+2) =@tz +ez=[z,ayt+7]
{:L', a, {za a, y}] = [z’ a, [:E, a, y]]
a2 +y] = (z+y) + 2,
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i.e., the associative law is valid. Note that z + a = [a,a,z] = z for all z € X.
Hence a is the identity element of X. Now let z,y,2z € X be such that z < .
Then z+2 = (2,0, 7] < [2,a,y] = y+2. By the commutativity of +, z+z < z+y.
Therefore X := (X, +, X) is a commutative pomonoid. O

Defitinition 4.13. Let X and 2) be WFI-algebras. A mapping f : X — 2 is
called a WFI-morphism if it satisfies:

(Vz,y € X) (f(z ©y) = f(z) © f(y)).

Theorem 4.14. Let f: X — 9 be an onto WFI-morphism of WFI-algebras.
For any a € X, if X is an a-doubly simulative WFI-algebra, then 9 is an f(a)-
doubly simulative WFI-algebra.

Proof. Let y € Y. Then there exists z € X such that f(z) = y. Since DS, (X) =
X, it follows that

y = f() = f([z,a)?) = [f(2), f(a)]* = [y, f(a)]*.
Hence y € DS (4)(9), and so DSf(4)(Y) = Y. This completes the proof. O
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