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FIXED POINT THEOREMS FOR GENERAL
CONTRACTIVE MULTIVALUED MAPPINGS
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ABSTRACT. We prove the existence of common fixed point for multivalued maps
satisfying general contractive type conditions.
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1. Introduction

Banach fixed point theorem plays an important role in several branches of
mathematics. For instance, it has been used to show the existence of solutions
of nonlinear Volterra integral equations, nonlinear integro-differential equations
in Banach spaces and to show the convergence of algorithms in computational
mathematics. Beacause of its importance for mathematical theory, Banach fixed
point theorem has been extended in many directions[1,2,3,4,7,9,14,15]. The gen-
eralizations to multivalued case are enormouse. One of these generalizations is
the Nadler’s theorem[9] as follows.

Theorem 1.1. Let (X,d) be a complete metric space and T be a multivalued
map on X with T'z is nonempty closed bounded subset of X for each x € X. If
there exists c € [0,1) such that

H(Tz,Ty) < cd(z,y),
then T' has a fixed point in X.

In [5], the authors proved the next Theorem 1.2 which is a generalization of
Theorem 1.1.
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Theorem 1.2. Let {X,d) be a complete metric space and T be a multivalued
map on X with Tz is nonempty closed bounded subset of X for each x € X. If
there ezists ¢ € [0,1) such that for each z,y € X

H(T.’I}, Ty) < cmax {d(x’ y)v d(xa Til?), d(ya T?])a %{d(xa Ty) + d(y7 TIII)}},

then T has a fized point in X provided that x — d(z,T'x) is lower semicontinu-
ous. \

Recently, in [6,7,10,11,13,14,16] the authors proved fixed point theorems for
multivalued maps.

In particular, in [7] the authors gave a generalization of Theorem 1.1.
In this paper, we give a generalization of Theorem 1.2 without the condition of
which z — d(z, T'z) is lower semicontinuous. This will be done in Theorem 2.1.

In [8], the authors proved the next theorem 1.3 which is a positive response of
the conjecture proposed by Reich[12]. In [8], the authors replaced the condition
rl-:r?% k(ry < 1forall 0 <t < oo by rlllg k(r) < 1 for all 0 <t < oo, where
k:[0,00) — [0,1). In [5], the authors gave an alternative proof of theorem 5 of
(8].

Theorem 1.3. Let (X,d) be a complete metric space and T be a multivalued
map on X with Tz is nonempty closed bounded subset of X for each x € X and
if for each z,y € X

H(Tz,Ty) < k (d(zy))d(z,y),
where k : (0,00) — [0,1) is a function such that lim sup k(r) < 1 for every

r—tt+
t € [0,00), then T has a fized point in X.

In this paper, we give a generalization of theorem 5 of [8] and theorem 2.1 of
[5].
Let (X, d) be a metric space. We denote by CB(X) the family of nonempty

closed bounded subsets of X. Let H(:,-) be the Hausdorff distance on CB(X).
That is, for A, B € CB(X),

H(A, B) = max { supac 4d(a, B), sumend(A,b)}

where d(a, B) = inf {d(a, by:be B} is the distance from the point a to the
subset B. ,
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Lemma 1.4[9]. Let (X,d) be a metric space and let A,B € CB(X) with

H(A,B) < €. Then for each a € A, there exists a point b € B such that
d(a,b) < e.

From now on, let ¢ : [0,00) — [0,00) be a strictly increasing function such
that

(1) 6(0) =0,
(¢2) 0 < ¢(t) < t for each t > 0,

(¢3) Z @™ (t) < oo for each t € (0,00).

n=1

2. Fixed point theorems

Theorem 2.1. Let (X, d) be a complete metric space and T, S : X — CB(X)
be multivalued maps satisfying for each z,y € X,

H(Sz,Ty) < ¢ (max{d(m,y),d(w, Sz),d(y, Ty), %{d(z,Ty) + d(y, Sm)}}) .

(2.1.1)
Then T and S have a common fized point in X. That is, there exists a point
p € X such thatp € TpnN Sp.

Proof. Let zg € X and z; € Szg. Let ¢ € X be such that ¢(d(zo,z1)) < ¢(c).
We have

d(z1,Tzy)
S H(S.’l?o, Tl‘l)

<4 (max {d(zo, 1), d(zo, Szo), d(as, T), %{d(zo, Ta1) +d(z1, sxo)}}>

1
<¢ <max {d(mo, z1), d(zo, 1), d(z1, Tx1), E{d(mo,Txl) + d(ml,xl)}}) )
(2.1.2)
If d(zo, 1) < d(z1,Ta1), then d(z:, Ta1) < ¢<d(:c1,T:r1)) which implies

d(z1,Tz1) = 0 and so d(zo, 1) = 0. Thus we have 21 € Tz N Sz, That is, T
and S have a common fixed point in X.

Suppose that d(z1, Tz1) < d(zo,z1). From (2.1.2) we have

d(ml,Txl) < ¢(d(wo,9:1)) < ¢(e).

We can take z3 € T'z1 such that d(x1, z2) < ¢(c).
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Similarly, we have

d(.’Ez, S:Bz)
< H(Sx3,Txy)

< ¢ (max {d(xlv $2)’ d(x27 S.’L‘z), d(a:l: Txl)a %{d(x% TZ'1) + d(mh S$2)}})

S qb (max {d(xl, .132), d(.’l?g, ng), d(:z:l, xz), %{d(mz, xg) + d(:l)l, S:L'Q)}})

< ¢(d($1, 732))

< ¢%(c).

We can take z3 € Sza such that d(zs,23) < ¢?(c). Continuing this process,
we can construct a sequence {z,} in X such that

Zont1 € STon, Tans2 € T2opt1,d(Zn, Tni1) < @™ (c).

o0 o
Thus we have Z A(Zn, Try1) < Z ¢™(¢) < oo. Therefore, {z,} is a Cauchy
7= n=0 ‘
sequence in X and let lim z, = p. From (2.1.1) we have
B— 00

d(x2n+1y Tp) < H(S.’L‘zn, Tp)

< ¢ (mx {d(azn,), (a2, St20), . Tp), 3 (Ao T) + 5, S} } )

1
<¢ (max {d($2n,p),d($2m Tan+1), 4(p, T'p), §{d(x2n7 Tp) + d(p, $2n+1)}}> .
(2.1.3)
Letting n — oo in (2.1.3) we have d(p, Tp) < qb(d(p, Tp)). Thus d(p, Tp) =0

orpeTp.
Similarly, we can show p € Sp. Therefore, we have p € TpN Sp. [J

Corollary 2.2. Let (X,d) be a complete metric space and T : X — CB(X) be
multivalued maps satisfying for each x,y € X,

H(Tz,Ty) < ¢ (max {d(z,v),d(z, ), d(y, Ty), —;—{d(w, Ty) + d(y, T:c)}}) .
Then T has a fized point in X.

If we have ¢(t) = kt,k € [0,1) in Theorem 2.1(Corollary 2.2), then the con-
culusion of Theorem 2.1(Corollary 2.2) is satisfied.
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Theorem 2.3. Let (X,d) be a metric space and let T,S : X — CB(X) be
multivalued maps and f: X — X be a map satisfying

(1) T(X) C f(X) and S(X) C f(X),

(i1) f(X) is complete

(i13) there exists a function ¢ : (0,00) — [0,1) such that

lim sup, s+ (1) < 1 for every t € [0, 00), (2.3.1)
and for each x,y € X,

H(Sz,Ty) < o(d(fz, 3)) d(f, fy). (2:3.2)

Then T, S and f have a coincidence point in X. That is, there exists p € X such
that fp € SpNTp.

Proof. Let g € X and let 2; € X be such that fz; € Szg. From (2.3.2) we
have

d(fz1,Te1) < H(Szo, Tz1) < <p(d(fq;o, facl))d(fazo, fz1) < d(fzo, fx1).
By Lemma 1.4 and (¢), We can take zo € X such that

fzo € Tz1 and d(fzy, fz2) < d(fzo, fz1).

From (2.3.2) we have
d(fzs, Sz) < H(St2, Tz1) < go(d( fai, f@))d( o1, frs) < d(fz1, f12).
Again, by Lemma 1.4 and (%), we can take 3 € X such that

fzs € Sz and d(fza, fzs) < d(fr1, fz2).

Continuing this process, we can construct a sequences {z,} in X such that for
n=0,1,

fTont1 € STon, fTant2 € Toan+1, d(fTnt1, fEnt2) < d(fTn, fTni1)

Since {d( fxn, fxn+1)} is a nomnincreasing sequence in [0, 00), the sequence

{d(f:cn, fxn+1)} is convergent. From (2.3.1) there exists r € (0,1) such that
lim sup p(d(fTpn, fTnt1)) = r. Thus for any [ € (r,1), there exists np € N
n—oo

such that for all n > ng, @(d(fmn_l, fxn)) < . Hence we have for n > ny,
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d(fTn, fEnts)
<p(d(fZn-1, 2n) ) A fTn-1, f2n)
<l d(f2n-1, fza)
<A f g, fngir)-

For m > n > ng, we have

Sd(fwm fxn+1) + d(fxn+17 fﬂf'n+2) et d(ffl'm—-la fxm)
s(l”"“’ HirTmet £m‘”°"1)d(fa:no, Fno+1)

n—ngo

< 1—1 d(fxﬂo:fxno+1)a

which implies ml}gloo A frn, fem) =0

Therefore, { fxn} is a Cauchy sequence in f(X). Let 7}1{2{) frn =u € f(X).
Then there exists a point p € X such that fp = u and so l'im fzn = fp.

From (2.3.2) we have e

d(fxon+2,Sp) < H(Sp, Tront1) < cp(d(fp, f$2n+1))d(fp, fTong1).

Letting n — oo, we have d(fp, Sp) =0 or fp € Sp.
Similary, we can show fp € Tp. Therefore, we have fp € SpnTp. O

Corollary 2.4. Let (X,d) be a metric space and let T : X — CB(X) be multi-
valued map and f: X — X be a map satisfying

(i) T(X) € £(X),

(1) f(X) is complete ,

(ti3) for each z,y € X, H(Tz,Ty) < go(d(fx fy))d( fz, fy), where ¢ :
(0,00) — [0,1) is a function such that limsupp(r) < 1 for every t € [0, 00).

Pt

Then T and f have a coincidence point in X. That is, there exists p € X such
that fp € Tp.

In Theorem 2.3(Corollary 2.4), if we take f = id then we have the following
result, where id is the identity map on X.
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Corollary 2.5. Let (X,d) be a complete metric space and let T,S : X —
CB(X) be multivalued maps satisfying for each z,y € X,

H(Sz,Ty) < p(d(z,y))d(a,v),

where ¢ : (0,00) — [0,1) is a function such that limsupp(r) < 1 for every
r—tt
t €[0,00). Then T and S have a common fized point in X. That is, there exists

p € X such thatp € SpNTp.

Corollary 2.6. Let (X,d) be a complete metric space and T : X — CB(X)
be multivalued map satisfying for each z,y € X, H(Tz,Ty) < @(d(x, y)) d(z,y)
where ¢ : (0,00} — [0,1) is a function such that imsupp(r) < 1 for every

rott
t € [0, 00).
Then T has a fized point in X. That is, there exists p € X such that p € Tp.
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