SOME IDEALS OF PSEUDO BCI-ALGEBRAS

KYOUNG JA LEE AND CHUL HWAN PARK*

ABSTRACT. The notion of *-medial pseudo BCI-algebras is introduced, and its characterization is discussed. The concepts of associative pseudo ideals (resp. pseudo p-ideals, pseudo q-ideals and pseudo a-ideals) are introduced, and related properties are investigated. Conditions for a pseudo ideal to be a pseudo p-ideal (resp. pseudo q-ideal) are provided. A characterization of an associative pseudo ideal is given. We finally show that every pseudo BCI-homomorphic image and preimage of an associative pseudo ideal (resp. a pseudo p-ideal, a pseudo q-ideal and a pseudo q-ideal is also an associative pseudo ideal (resp. a pseudo p-ideal, a pseudo q-ideal and a pseu

AMS Mathematics Subject Classification: 06F35, 03G25. Keywords and phrases: Pseudo BCI-algebra, (associative) pseudo ideal, pseudo p-ideal, pseudo q-ideal, pseudo a-ideal.

1. Introduction

G. Georgescu and A. Iorgulescu [2] introduced the notion of a pseudo BCK-algebra as an extended notion of BCK-algebras. In [3], Y. B. Jun, one of the present authors, gave a characterization of pseudo BCK-algebra, and provided conditions for a pseudo BCK-algebra to be ∧-semi-lattice ordered (resp. ∩-semi-lattice ordered). Y. B. Jun et al. [5] introduced the notion of (positive implicative) pseudo-ideals in a pseudo-BCK algebra, and then they investigated some of their properties. In [1], W. A. Dudek and Y. B. Jun introduced the notion of pseudo BCIalgebras as an extension of BCI-algebras, and investigated some properties. Y. B. Jun et al. [4] introduced the concepts of pseudo-atoms, pseudo ideals and pseudo BCI-homomorphisms in pseudo BCI-algebras. They displayed characterizations of a pseudo ideal, and provided conditions for a subset to be a pseudo ideal. They also introduced the notion of a ⋄-medial pseudo BCI-algebra, and gave its characterization. They proved that every pseudo BCI-homomorphic image and preimage of a pseudo ideal is also a pseudo ideal. In

Received February 28, 2008. Accepted April 10, 2008. *Corresponding author.

[©] 2009 Korean SIGCAM and KSCAM .

[6], Y. L. Liu et al. extended the ideal and congruence theory to pseudo BCK-algebras, and investigated the connections between pseudo BCK-algebras and PD (GPD)-posets.

In this paper, we introduce the notion of *-medial pseudo BCI-algebras, and investigate its characterization. We also introduce the concepts of associative pseudo ideals (resp. pseudo p-ideals, pseudo q-ideals and pseudo a-ideals), and investigate related properties. We provide conditions for a pseudo ideal to be a pseudo p-ideal (resp. pseudo q-ideal). We give a characterization of an associative pseudo ideal. We show that every pseudo BCI-homomorphic image and preimage of an associative pseudo ideal (resp. a pseudo p-ideal, a pseudo q-ideal and a pseudo a-ideal) is also an associative pseudo ideal (resp. a pseudo p-ideal, a pseudo p-ideal and a pseudo a-ideal).

2. Preliminaries

A BCK/BCI-algebra is an important calss of logical algebras introduced by K. Iséki and was extensively investigated by several researchers.

An algebra (X; *, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following conditions:

- (I) $(\forall x, y, z \in X)$ (((x * y) * (x * z)) * (z * y) = 0),
- (II) $(\forall x, y \in X) ((x * (x * y)) * y = 0),$
- (III) $(\forall x \in X) (x * x = 0),$
- (IV) $(\forall x, y \in X)$ $(x * y = 0 \& y * x = 0 \Rightarrow x = y).$

If a BCI-algebra X satisfies the following identity:

(V)
$$(\forall x \in X) (0 * x = 0),$$

then X is called a BCK-algebra. Any BCK-algebra X satisfies the following axioms:

- (a1) $(\forall x \in X) (x * 0 = x),$
- (a2) $(\forall x, y, z \in X)$ $(x \le y \Rightarrow x * z \le y * z, z * y \le z * x),$
- (a3) $(\forall x, y, z \in X) ((x * y) * z = (x * z) * y),$
- (a4) $(\forall x, y, z \in X)$ $((x*z)*(y*z) \le x*y)$

where $x \leq y$ if and only if x * y = 0.

A nonempty subset I of a BCI-algebra X is called an *ideal* of X if it satisfies:

$$0 \in I$$
 (1)

and

$$(\forall x, y \in X) (x * y \in I \& y \in I \Longrightarrow x \in I). \tag{2}$$

A nonempty subset I of a BCI-algebra X is called a p-ideal of X (see [8]) if it satisfies (1) and

$$(\forall x, y, z \in X) ((x * z) * (y * z) \in I \& y \in I \Longrightarrow x \in I). \tag{3}$$

A nonempty subset I of a BCI-algebra X is called a q-ideal of X (see [7]) if it satisfies (1) and

$$(\forall x, y, z \in X) (x * (y * z) \in I \& y \in I \Longrightarrow x * z \in I). \tag{4}$$

A nonempty subset I of a BCI-algebra X is called an a-ideal of X (see [7]) if it satisfies (1) and

$$(\forall x, y, z \in X) ((x * z) * (0 * y) \in I \& z \in I \Longrightarrow y * x \in I). \tag{5}$$

Definition 1. [2] A pseudo BCK-algebra is a structure $\mathfrak{X} := (X, \leq, *, \diamond, 0)$, where " \leq " is a binary relation on a set X, "*" and " \diamond " are binary operations on X and " \diamond " is an element of X, verifying the axioms: for all $x, y, z \in X$,

$$(x * y) \diamond (x * z) \leq z * y, \quad (x \diamond y) * (x \diamond z) \leq z \diamond y, \tag{6}$$

$$x * (x \diamond y) \preceq y, \quad x \diamond (x * y) \preceq y,$$
 (7)

$$x \leq x,$$
 (8)

$$0 \le x,\tag{9}$$

$$x \leq y \& y \leq x \Longrightarrow x = y, \tag{10}$$

$$x \leq y \iff x * y = 0 \iff x \diamond y = 0. \tag{11}$$

Definition 2. [1] A pseudo BCI-algebra is a structure $\mathfrak{X} := (X, \leq, *, \diamond, 0)$, where " \leq " is a binary relation on a set X, "*" and " \diamond " are binary operations on X and " \circ " is an element of X, verifying the axioms (6), (7), (8), (10) and (11).

Example 1. [4] Let $X = [0, \infty]$ and let \leq be the usual order on X. Define binary operations "*" and " \diamond " on X by

$$x * y := \begin{cases} 0 & \text{if } x \leq y, \\ \frac{2x}{\pi} \arctan\left(\ln(\frac{x}{y})\right) & \text{if } y < x, \end{cases}$$
$$x \diamond y := \begin{cases} 0 & \text{if } x \leq y, \\ xe^{-\tan(\frac{\pi y}{2x})} & \text{if } y < x, \end{cases}$$

for all $x,y\in X$. Then $\mathfrak{X}:=(X,\leq,*,\diamond,0)$ is a pseudo BCK-algebra, and hence a pseudo BCI-algebra.

Proposition 1. [1, 4] In a pseudo BCI-algebra \mathfrak{X} the following holds:

- (b1) $x \leq 0 \Rightarrow x = 0$.
- (b2) $x \preceq y \Rightarrow z * y \preceq z * x, z \diamond y \preceq z \diamond x.$
- (b3) $x \leq y, y \leq z \Rightarrow x \leq z$.
- (b4) $(x*y) \diamond z = (x \diamond z) * y$.
- (b5) $x * y \prec z \Leftrightarrow x \diamond z \prec y$.
- (b6) $(x*y)*(z*y) \leq x*z$, $(x \diamond y) \diamond (z \diamond y) \leq x \diamond z$.

(b7)
$$x \leq y \Rightarrow x * z \leq y * z, \ x \diamond z \leq y \diamond z.$$

(b8)
$$x * 0 = x = x \diamond 0$$
.

(b9)
$$x * (x \diamond (x * y)) = x * y, x \diamond (x * (x \diamond y)) = x \diamond y.$$

(b10)
$$0 * (x \diamond y) \preceq y \diamond x$$
.

(b11)
$$0 \diamond (x * y) \preceq y * x$$
.

(b12)
$$0 * (x * y) = (0 \diamond x) \diamond (0 * y)$$
.

(b13)
$$0 \diamond (x \diamond y) = (0 * x) * (0 \diamond y)$$
.

3. Further properties of pseudo BCI-algebras

Proposition 2. Let $\mathfrak{X} := (X, \preceq, *, \diamond, 0)$ be a pseudo BCI-algebra. Then we have $(\forall x \in X) (0 * x = 0 \diamond x).$ (12)

Proof. Putting y = x and z = 0 in (6), we obtain $(x * x) \diamond (x * 0) \leq 0 * x$ and $(x \diamond x) * (x \diamond 0) \leq 0 \diamond x$ for all $x \in X$. It follows from (8) and (b8) that $0 \diamond x \leq 0 * x$ and $0 * x \leq 0 \diamond x$. Hence $0 * x = 0 \diamond x$ by (10).

Definition 3. A pseudo BCI-algebra \mathfrak{X} is said to be *-medial if it satisfies the following identity:

$$(\forall x, y, a, b \in X) ((x \diamond y) * (a \diamond b) = (x \diamond a) * (y \diamond b)). \tag{13}$$

Proposition 3. A pseudo BCI-algebra \mathfrak{X} is *-medial if and only if it satisfies:

$$(\forall x, y, z \in X) (x * (y \diamond z) = (x \diamond y) * (0 \diamond z)). \tag{14}$$

Proof. Assume that \mathfrak{X} is *-medial. Putting a=0 and b=z in (14) and using (b8), we have

$$(x \diamond y) * (0 \diamond z) = (x \diamond 0) * (y \diamond z) = x * (y \diamond z).$$

Conversely, suppose that \mathfrak{X} satisfies the condition (14). Using (b4), we have

$$(x \diamond y) * (a \diamond b) = (x * (a \diamond b)) \diamond y$$

$$= ((x \diamond a) * (0 \diamond b)) \diamond y$$

$$= ((x \diamond a) \diamond y) * (0 \diamond b)$$

$$= (x \diamond a) * (y \diamond b)$$

for all $x, y, a, b \in X$. Therefore \mathfrak{X} is *-medial.

Proposition 4. Every *-medial pseudo BCI-algebra \mathfrak{X} satisfies the following identities.

- (i) $x \diamond y = 0 * (y \diamond x)$.
- (ii) $0 * (0 \diamond x) = x$.
- (iii) $x * (x \diamond y) = y$.

Proof. (i) For any $x, y \in X$, we have

$$\begin{array}{rcl} x \diamond y & = & (x \diamond y) * 0 = (x \diamond y) * (x \diamond x) \\ & = & (x \diamond x) * (y \diamond x) = 0 * (y \diamond x). \end{array}$$

- (ii) If we put y = 0 in (i), then we have (ii).
- (iii) Using (ii), (8) and (b8), we get

$$x*(x\diamond y)=(x\diamond 0)*(x\diamond y)=(x\diamond x)*(0\diamond y)=0*(0\diamond y)=y.$$

This completes the proof.

4. Pseudo ideals

In what follows, let $\mathfrak{X} := (X, \preceq, *, \diamond, 0)$ be a pseudo BCI-algebra unless otherwise specified.

For any nonempty subset J of X and any element y of X, we denote

$$*(y, J) := \{x \in X \mid x * y \in J\} \text{ and } \diamond (y, J) := \{x \in X \mid x \diamond y \in J\}.$$

Definition 4. [4] A nonempty subset J of $\mathfrak X$ is called a *pseudo ideal* of $\mathfrak X$ if it satisfies

(c1)
$$0 \in J$$
,

(c2)
$$(\forall y \in J) \ (*(y, J) \subseteq J \& \diamond (y, J) \subseteq J).$$

Proposition 5. Let J be a pseudo ideal of \mathfrak{X} . Then

$$(\forall x \in X) (x \in J \Longrightarrow 0 * (0 \diamond x) \in J \& 0 \diamond (0 * x) \in J). \tag{15}$$

Proof. Let $x \in J$. Then

$$0 = (0 \diamond x) * (0 \diamond x) = (0 * (0 \diamond x)) \diamond x$$

and

$$0 = (0 * x) \diamond (0 * x) = (0 \diamond (0 * x)) * x$$

which imply that $0 * (0 \diamond x) \in \diamond(x, J) \subseteq J$ and $0 \diamond (0 * x) \in *(x, J) \subseteq J$. This completes the proof.

Lemma 1. [4] Let J be a pseudo ideal of \mathfrak{X} . If $x \in J$ and $y \preceq x$, then $y \in J$.

Theorem 1. Let J be a pseudo ideal of \mathfrak{X} and let

$$J^{\sharp} := \{ x \in X \mid 0 * (0 \diamond x) \in J, \ 0 \diamond (0 * x) \in J \}.$$

Then J^{\sharp} is a pseudo ideal of \mathfrak{X} and $J \subseteq J^{\sharp}$.

Proof. Obviously, $0 \in J^{\sharp}$. For any $y \in J^{\sharp}$, let $a \in *(y, J^{\sharp})$ and $b \in \diamond(y, J^{\sharp})$. Then $a * y \in J^{\sharp}$ and $b \diamond y \in J^{\sharp}$, that is, $0 * (0 \diamond (a * y)) \in J$, $0 \diamond (0 * (a * y)) \in J$, $0 \diamond (0 * (b \diamond y)) \in J$. Using (b12) and (b13), we have

$$(0 \diamond (0 * b)) \diamond (0 * (0 \diamond y)) = 0 * ((0 * b) * (0 \diamond y)) = 0 * (0 \diamond (b \diamond y)) \in J$$

and

$$(0*(0 \diamond a))*(0 \diamond (0*y)) = 0 \diamond ((0 \diamond a) \diamond (0*y)) = 0 \diamond (0*(a*y)) \in J.$$

Since $0 * (0 \diamond y) \in J$ and $0 \diamond (0 * y) \in J$, it follows that

$$0 \diamond (0 * b) \in \diamond (0 * (0 \diamond y), J) \subseteq J, \\
0 * (0 \diamond a) \in *(0 \diamond (0 * y), J) \subseteq J.$$
(16)

Now, since $0 \diamond (a * y) \leq y * a$ and $0 * (b \diamond y) \leq y \diamond b$, it follows from (b2) that

$$(0 \diamond y) \diamond (0 * a) = 0 * (y * a) \preceq 0 * (0 \diamond (a * y)) \in J$$

and

$$(0*y)*(0\diamond b)=0\diamond (y\diamond b)\preceq 0\diamond (0*(b\diamond y))\in J.$$

Using Lemma 1, we get

$$(0 \diamond y) \diamond (0 * a) \in J, \quad (0 * y) * (0 \diamond b) \in J. \tag{17}$$

Taking y = 0 in (17) implies that

$$0 \diamond (0 * a) \in J, \quad 0 * (0 \diamond b) \in J. \tag{18}$$

Combining (16) and (18), we have $a \in J^{\sharp}$ and $b \in J^{\sharp}$. Hence $*(y, J^{\sharp}) \subseteq J^{\sharp}$ and $\diamond(y, J^{\sharp}) \subseteq J^{\sharp}$, that is, J^{\sharp} is a pseudo ideal of \mathfrak{X} . By Proposition 5, we know that $J \subseteq J^{\sharp}$. This completes the proof.

Definition 5. A nonempty subset J of \mathfrak{X} is called a *pseudo p-ideal* of \mathfrak{X} if it satisfies (c1) and

$$(x*z) \diamond (y*z) \in J & y \in J \Longrightarrow x \in J, (x\diamond z)*(y\diamond z) \in J & y \in J \Longrightarrow x \in J$$
 (19)

for all $x, y, z \in X$.

Note that if \mathfrak{X} is a pseudo BCI-algebra satisfying $x * y = x \diamond y$ for all $x, y \in X$, then the notions of a pseudo p-ideal and a p-ideal coincide.

Theorem 2. Every pseudo p-ideal of \mathfrak{X} is a pseudo ideal of \mathfrak{X} .

Proof. Let J be a pseudo p-ideal of \mathfrak{X} . For any $y \in J$, let $a \in *(y, J)$ and $b \in \diamond(y, J)$. Then

$$(a \diamond 0) * (y \diamond 0) = a * y \in J, \ (b * 0) \diamond (y * 0) = b \diamond y \in J.$$

It follows from (19) that $a \in J$ and $b \in J$. Hence $*(y, J) \subseteq J$ and $\diamond(y, J) \subseteq J$. Therefore J is a pseudo p-ideal of \mathfrak{X} .

The converse of Theorem 2 is not true in general as seen in the following example.

Example 2. Consider the pseudo BCI-algebra $\mathfrak X$ which is described in Example 1. Note that $J := \{0\}$ is a pseudo ideal of $\mathfrak X$. But $J := \{0\}$ is not a pseudo p-ideal of $\mathfrak X$ since $(1*2) \diamond (0*2) = 0 \diamond (0*2) = 0 \in J$ and $(1 \diamond 2) * (0 \diamond 2) = 0 \in J$, but $1 \notin J$.

Proposition 6. Let J be a pseudo p-ideal of \mathfrak{X} . Then we have

$$0 * (0 \diamond x) \in J \implies x \in J, \\
0 \diamond (0 * x) \in J \implies x \in J$$
(20)

for all $x \in X$.

Proof. Assume that $0*(0\diamond x)\in J$ and $0\diamond(0*x)\in J$ for all $x\in X$. Then

$$(x \diamond x) * (0 \diamond x) = 0 * (0 \diamond x) \in J, \ (x * x) \diamond (0 * x) = 0 \diamond (0 * x) \in J.$$

Using (19), we have $x \in J$. This completes the proof.

Combining Propositions 5 and 6, we have the following corollary.

Corollary 1. Let J be a pseudo p-ideal of \mathfrak{X} . Then we have

$$0 * (0 \diamond x) \in J \iff x \in J, \\
0 \diamond (0 * x) \in J \iff x \in J$$
(21)

for all $x \in X$.

We give a condition for a pseudo ideal to be a pseudo p-ideal.

Theorem 3. Let J be a pseudo ideal of \mathfrak{X} that satisfies the following assertions:

$$(x*z) \diamond (y*z) \in J \Longrightarrow x \diamond y \in J, \\ (x \diamond z) * (y \diamond z) \in J \Longrightarrow x * y \in J$$
 (22)

for all $x, y, z \in X$. Then J is a pseudo p-ideal of \mathfrak{X} .

Proof. Let J be a pseudo ideal of \mathfrak{X} that satisfies (22). Let $x, z \in X$ and $y \in J$ be such that $(x*z) \diamond (y*z) \in J$ and $(x \diamond z) * (y \diamond z) \in J$. It follows from (22) that $x \diamond y \in J$ and $x*y \in J$. Hence $x \in \diamond (y, J) \subseteq J$ and $x \in *(y, J) \subseteq J$. Therefore J is a pseudo p-ideal of \mathfrak{X} .

Definition 6. A nonempty subset J of \mathfrak{X} is called an associative pseudo ideal of \mathfrak{X} if it satisfies (c1) and

$$(x * y) \diamond z \in J & y \diamond z \in J \Longrightarrow x \in J, (x \diamond y) * z \in J & y * z \in J \Longrightarrow x \in J$$
 (23)

for all $x, y, z \in X$.

Theorem 4. A nonempty subset J of \mathfrak{X} is an associative pseudo ideal of \mathfrak{X} if and only if it satisfies (c1) and

$$(x * y) \diamond y \in J \Longrightarrow x \in J,$$

$$(x \diamond y) * y \in J \Longrightarrow x \in J$$

$$(24)$$

for all $x, y \in X$.

Proof. Assume that J is an associative pseudo ideal of \mathfrak{X} . Let $x,y\in X$ be such that $(x*y)\diamond y\in J$ and $(x\diamond y)*y\in J$. Since $y\diamond y=0=y*y$, it follows from (c1) and (23) that $x\in J$. Conversely, let J be a nonempty subset of \mathfrak{X} satisfying (c1) and (24). Let $x,y,z\in X$ be such that $(x*y)\diamond z\in J, y\diamond z\in J, (x\diamond y)*z\in J$ and $y*z\in J$. If we take z=y, then $(x*y)\diamond y\in J$ and $(x\diamond y)*y\in J$. By (24), we have $x\in J$. Hence \mathfrak{X} is associative.

Theorem 5. Every associative pseudo ideal of \mathfrak{X} is a pseudo ideal of \mathfrak{X} .

Proof. Let J be an associative pseudo ideal of \mathfrak{X} . For any $y \in J$, let $x \in *(y, J)$ and $a \in \diamond(y, J)$. Then $(x * y) \diamond 0 = x * y \in J$ and $(a \diamond y) * 0 = a \diamond y \in J$. Since $y \diamond 0 = y \in J$ and $y * 0 = y \in J$, it follows from (23) that $x \in J$ and $a \in J$. Hence $*(y, J) \subseteq J$ and $\diamond(y, J) \subseteq J$. Therefore J is a pseudo ideal of \mathfrak{X} .

The converse of Theorem 5 is not true in general as seen in the following example.

Example 3. Consider the pseudo BCI-algebra $\mathfrak X$ which is described in Example 1. We know that $J:=\{0\}$ is a pseudo ideal of $\mathfrak X$. But J is not an associative pseudo ideal of $\mathfrak X$ since $(1*2)\diamond 2=0\diamond 2=0\in J$, $(1\diamond 2)*2=0*2=0\in J$ and $2*2=2\diamond 2=0\in J$, but $1\notin J$.

Proposition 7. Every associative pseudo ideal J of \mathfrak{X} satisfies the following assertions:

$$\begin{aligned}
x * y \in J & & x \in J \implies y \in J, \\
x \diamond y \in J & & x \in J \implies y \in J
\end{aligned} \tag{25}$$

for all $x, y \in X$.

Proof. Let $x, y \in X$ be such that $x \in J$, $x*y \in J$ and $x \diamond y \in J$. Then $0*(0 \diamond x) \in J$ and $0 \diamond (0*x) \in J$ by Proposition 5. Hence

$$((0 \diamond x) \diamond (0 \diamond x)) * (0 \diamond x) = 0 * (0 \diamond x) \in J,$$
$$((0 * x) * (0 * x)) \diamond (0 * x) = 0 \diamond (0 * x) \in J.$$

Using (24), we get $0 * x \in J$ and $0 \diamond x \in J$. Then

$$(y \diamond x) * y = (y * y) \diamond x = 0 \diamond x \in J,$$

$$(y * x) \diamond y = (y \diamond y) * x = 0 * x \in J.$$

Since $x * y \in J$ and $x \diamond y \in J$, it follows from (24) that $y \in J$. This completes the proof.

Definition 7. A nonempty subset J of \mathfrak{X} is called a *pseudo q-ideal* of \mathfrak{X} if it satisfies (c1) and

$$\begin{array}{l}
x * (y \diamond z) \in J & & y \in J \implies x * z \in J, \\
x \diamond (y * z) \in J & & y \in J \implies x \diamond z \in J
\end{array} \tag{26}$$

for all $x, y, z \in X$.

Note that if \mathfrak{X} is a pseudo BCI-algebra satisfying $x * y = x \diamond y$ for all $x, y \in X$, then the notions of a pseudo q-ideal and a q-ideal coincide.

Example 4. Consider the pseudo BCI-algebra \mathfrak{X} which is described in Example 1. Then $J := \{0\}$ is a pseudo q-ideal of \mathfrak{X} .

Theorem 6. Every pseudo q-ideal of \mathfrak{X} is a pseudo ideal of \mathfrak{X} .

Proof. Let J be a pseudo q-ideal of \mathfrak{X} . Taking z=0 in (26) and using (b8), we have

$$\begin{array}{ll} x*y\in J & \& \ y\in J \Longrightarrow x\in J,\\ x\diamond y\in J & \& \ y\in J \Longrightarrow x\in J \end{array}$$

for all $x, y \in X$. This means that $*(y, J) \subseteq J$ and $\diamond(y, J) \subseteq J$ for all $y \in J$. Hence J is a pseudo ideal of \mathfrak{X} .

Proposition 8. Every pseudo q-ideal J of \mathfrak{X} satisfies the following assertions:

$$\begin{array}{l}
x * (0 \diamond y) \in J \implies x * y \in J, \\
x \diamond (0 * y) \in J \implies x \diamond y \in J
\end{array} \tag{27}$$

for all $x, y \in X$.

Proof. Let $x, y \in X$ be such that $x * (0 \diamond y) \in J$ and $x \diamond (0 * y) \in J$. Since $0 \in J$, it follows from (26) that $x * y \in J$ and $x \diamond y \in J$.

Proposition 9. Every pseudo q-ideal J of \mathfrak{X} satisfies the following assertions:

$$\begin{array}{l}
x * (y \diamond z) \in J \implies (x * y) * z \in J, \\
x \diamond (y * z) \in J \implies (x \diamond y) \diamond z \in J
\end{array} \tag{28}$$

for all $x, y, z \in X$.

Proof. Suppose that $x*(y\diamond z)\in J$ and $x\diamond (y*z)\in J$ for all $x,y,z\in X$. Then

$$\begin{aligned} & ((x*y)*(0 \diamond z)) \diamond (x*(y \diamond z)) \\ & = ((x*y) \diamond (x*(y \diamond z))) * (0 \diamond z) \\ & \preceq ((y \diamond z) * y) * (0 \diamond z) \\ & = ((y*y) \diamond z) * (0 \diamond z) \\ & = (0 \diamond z) * (0 \diamond z) = 0 \in J \end{aligned}$$

and

$$\begin{aligned} &((x \diamond y) \diamond (0 * z)) * (x \diamond (y * z)) \\ &= ((x \diamond y) * (x \diamond (y * z))) \diamond (0 * z) \\ &\preceq ((y * z) \diamond y) \diamond (0 * z) \\ &= ((y \diamond y) * z) \diamond (0 * z) \\ &= (0 * z) \diamond (0 * z) = 0 \in J. \end{aligned}$$

Using Lemma 1, we get

$$((x*y)*(0\diamond z))\diamond(x*(y\diamond z))\in J$$

and

$$((x \diamond y) \diamond (0 * z)) * (x \diamond (y * z)) \in J.$$

Hence

$$(x*y)*(0\diamond z)\in \diamond(x*(y\diamond z),J)\subseteq J$$

and

$$(x \diamond y) \diamond (0 * z) \in *(x \diamond (y * z), J) \subseteq J.$$

It follows from Proposition 8 that $(x * y) * z \in J$ and $(x \diamond y) \diamond z \in J$.

We provide conditions for a pseudo ideal to be a pseudo q-ideal.

Theorem 7. If a pseudo ideal J of \mathfrak{X} satisfies the following assertions:

$$\begin{array}{l}
x * (y \diamond z) \in J \implies (x \diamond y) * z \in J, \\
x \diamond (y * z) \in J \implies (x * y) \diamond z \in J
\end{array} \tag{29}$$

for all $x, y, z \in X$, then J is a pseudo q-ideal of \mathfrak{X} .

Proof. Let $x, y, z \in X$ be such that $y \in J$, $x * (y \diamond z) \in J$ and $x \diamond (y * z) \in J$. Applying (b4) and (29), we have

$$(x*z)\diamond y=(x\diamond y)*z\in J \text{ and } (x\diamond z)*y=(x*y)\diamond z\in J.$$

Hence $x*z \in \diamond(y,J) \subseteq J$ and $x\diamond z \in *(y,J) \subseteq J$. Therefore J is a pseudo q-ideal of \mathfrak{X} .

Theorem 8. Let J be a pseudo ideal of \mathfrak{X} which satisfies:

$$(\forall x, y \in X) (x \in J \implies x * y \in J \& x \diamond y \in J). \tag{30}$$

Then J is a pseudo q-ideal of \mathfrak{X} .

Proof. Let $x, y, z \in X$ be such that $y \in J$, $x * (y \diamond z) \in J$ and $x \diamond (y * z) \in J$. Using (30) and (b4), we have $y * z \in J$, $y \diamond z \in J$,

$$(x \diamond z) * (y \diamond z) = (x * (y \diamond z)) \diamond z \in J$$

and

$$(x*z)\diamond(y*z)=(x\diamond(y*z))*z\in J.$$

Hence $x \diamond z \in *(y \diamond z, J) \subseteq J$ and $x * z \in \diamond(y * z, J) \subseteq J$. Therefore J is a pseudo q-ideal of \mathfrak{X} .

Theorem 9. Let J be a pseudo ideal of \mathfrak{X} that satisfies (28) and

$$(\forall x, y, z \in X) ((x * y) * z = (x * z) * y & (x \diamond y) \diamond z = (x \diamond z) \diamond y). \tag{31}$$

Then J is a pseudo q-ideal of \mathfrak{X} .

Proof. Let $x, y, z \in X$ be such that $y \in J$, $x*(y\diamond z) \in J$ and $x\diamond(y*z) \in J$. Using (28) and (31), we obtain $(x*z)*y = (x*y)*z \in J$ and $(x\diamond z)\diamond y = (x\diamond y)\diamond z \in J$. Hence $x*z \in *(y,J) \subseteq J$ and $x\diamond z \in \diamond(y,J) \subseteq J$. Therefore J is a pseudo q-ideal of \mathfrak{X} .

Definition 8. A nonempty subset J of \mathfrak{X} is called a *pseudo a-ideal* of \mathfrak{X} if it satisfies (c1) and

$$(x * y) \diamond (0 * z) \in J & y \in J \Longrightarrow z \diamond x \in J, (x \diamond y) * (0 \diamond z) \in J & y \in J \Longrightarrow z * x \in J$$
 (32)

for all $x, y, z \in X$.

Note that if $\mathfrak X$ is a pseudo BCI-algebra satisfying $x*y=x\diamond y$ for all $x,y\in X$, then the notions of a pseudo a-ideal and an a-ideal coincide.

Theorem 10. Every pseudo a-ideal of \mathfrak{X} is a pseudo ideal of \mathfrak{X} .

Proof. For any $y \in J$, let $x \in *(y, J)$ and $w \in \diamond(y, J)$. Then $(x * y) \diamond (0 * 0) = x * y \in J$ and $(w \diamond y) * (0 \diamond 0) = w \diamond y \in J$. It follows from (32) that

$$0 \diamond x \in J \text{ and } 0 * w \in J. \tag{33}$$

Putting z = y = 0 in (32), we have

$$x \in J \implies 0 \diamond x \in J \& 0 * x \in J. \tag{34}$$

Combining (33) and (34), we get $(0 \diamond 0) * (0 \diamond x) = 0 * (0 \diamond x) \in J$ and $(0 * 0) \diamond (0 * w) = 0 \diamond (0 * w) \in J$. Using (32), we obtain $x = x * 0 \in J$ and $w = w \diamond 0 \in J$. Hence $*(y, J) \subseteq J$ and $\diamond(y, J) \subseteq J$. Therefore J is a pseudo ideal of \mathfrak{X} .

Proposition 10. Every pseudo a-ideal of \mathfrak{X} satisfies the following assertions:

$$(x*z) \diamond (0*y) \in J \implies y \diamond (x*z) \in J, (x \diamond z) * (0 \diamond y) \in J \implies y * (x \diamond z) \in J$$

$$(35)$$

for all $x, y, z \in X$.

Proof. Let $x, y, z \in X$ be such that $(x * z) \diamond (0 * y) \in J$ and $(x \diamond z) * (0 \diamond y) \in J$. Using (b4), we obtain

$$((x*z)*((x*z)\diamond(0*y)))\diamond(0*y) = ((x*z)\diamond(0*y))*((x*z)\diamond(0*y)) = 0 \in J$$
 and

$$((x \diamond z) \diamond ((x \diamond z) * (0 \diamond y))) * (0 \diamond y) = ((x \diamond z) * (0 \diamond y)) \diamond ((x \diamond z) * (0 \diamond y)) = 0 \in J.$$
 It follows from (32) that $y \diamond (x * z) \in J$ and $y * (x \diamond z) \in J$.

Taking z = 0 in (35) and using (b8), we have the following corollary.

Corollary 2. Every pseudo a-ideal of \mathfrak{X} satisfies the following assertions:

$$x \diamond (0 * y) \in J \implies y \diamond x \in J, x * (0 \diamond y) \in J \implies y * x \in J$$
(36)

for all $x, y \in X$.

Definition 9. [4] Let \mathfrak{X} and \mathfrak{Y} be pseudo BCI-algebras. A mapping $f: \mathfrak{X} \to \mathfrak{Y}$ is called a *pseudo BCI-homomorphism* if f(x * y) = f(x) * f(y) and $f(x \diamond y) = f(x) \diamond f(y)$ for all $x, y \in X$.

Proposition 11. [4] Let $f: \mathfrak{X} \to \mathfrak{Y}$ be a pseudo BCI-homomorphism from a pseudo BCI-algebra \mathfrak{X} to a pseudo BCI-algebra \mathfrak{Y} . Then

- (i) if J is a pseudo ideal of \mathfrak{Y} , then $f^{-1}(J)$ is a pseudo ideal of \mathfrak{X} .
- (ii) if f is surjective and I is a pseudo ideal of \mathfrak{X} , then f(I) is a pseudo ideal of \mathfrak{Y} .

Theorem 11. Let $f: \mathfrak{X} \to \mathfrak{Y}$ be a pseudo BCI-homomorphism from a pseudo BCI-algebra \mathfrak{X} to a pseudo BCI-algebra \mathfrak{Y} . Then

- (i) if J is an associative pseudo ideal of \mathfrak{D} , then $f^{-1}(J)$ is an associative pseudo ideal of \mathfrak{X} .
- (ii) if J is a pseudo p-ideal of \mathfrak{D} , then $f^{-1}(J)$ is a pseudo p-ideal of \mathfrak{X} .
- (iii) if J is a pseudo q-ideal of \mathfrak{D} , then $f^{-1}(J)$ is a pseudo q-ideal of \mathfrak{X} .

- (iv) if J is a pseudo a-ideal of \mathfrak{P} , then $f^{-1}(J)$ is a pseudo a-ideal of \mathfrak{X} .
- (v) if f is bijective and I is an associative pseudo ideal of \mathfrak{X} , then f(I) is an associative pseudo ideal of \mathfrak{D} .
- (vi) if f is bijective and I is a pseudo p-ideal of \mathfrak{X} , then f(I) is a pseudo p-ideal of \mathfrak{D} .
- (vii) if f is bijective and I is a pseudo q-ideal of \mathfrak{X} , then f(I) is a pseudo q-ideal of \mathfrak{Y} .
- (viii) if f is bijective and I is a pseudo a-ideal of \mathfrak{X} , then f(I) is a pseudo a-ideal of \mathfrak{D} .

Proof. (i) Assume that J is an associative pseudo ideal of \mathfrak{Y} . Let $x, y, z \in X$ be such that $(x * y) \diamond z \in f^{-1}(J)$ and $y \diamond z \in f^{-1}(J)$. Then

$$(f(x)*f(y)) \diamond f(z) = f((x*y) \diamond z) \in J \text{ and } f(y) \diamond f(z) = f(y \diamond z) \in J.$$

Since J is an associative pseudo ideal of \mathfrak{Y} , it follows from (23) that $f(x) \in J$. Hence $x \in f^{-1}(J)$. Similarly, if $(x \diamond y) * z \in f^{-1}(J)$ and $y * z \in f^{-1}(J)$, then $x \in f^{-1}(J)$. Therefore $f^{-1}(J)$ is an associative pseudo ideal of \mathfrak{X} .

(ii) Suppose that J is a pseudo p-ideal of $\mathfrak V$ and let $x,y,z\in X$ be such that $y\in f^{-1}(J),\,(x*z)\diamond(y*z)\in f^{-1}(J)$ and $(x\diamond z)*(y\diamond z)\in f^{-1}(J)$. Then $f(y)\in J$ and

$$(f(x) * f(z)) \diamond (f(y) * f(z)) = f((x * z) \diamond (y * z)) \in J,$$

$$(f(x) \diamond f(z)) * (f(y) \diamond f(z)) = f((x \diamond z) * (y \diamond z)) \in J.$$

It follows from (19) that $f(x) \in J$ so that $x \in f^{-1}(J)$. Hence $f^{-1}(J)$ is a pseudo p-ideal of \mathfrak{X} .

(iii) Suppose that J is a pseudo q-ideal of \mathfrak{Y} and let $x, y, z \in X$ be such that $y \in f^{-1}(J)$, $x * (y \diamond z) \in f^{-1}(J)$ and $x \diamond (y * z) \in f^{-1}(J)$. Then $f(y) \in J$ and

$$f(x) * (f(y) \diamond f(z)) = f(x * (y \diamond z)) \in J,$$

$$f(x) \diamond (f(y) * f(z)) = f(x \diamond (y * z)) \in J.$$

It follows from (26) that $f(x*z) = f(x)*f(z) \in J$ and $f(x\diamond z) = f(x)\diamond f(z) \in J$ so that $x*z \in f^{-1}(J)$ and $x\diamond z \in f^{-1}(J)$. Hence $f^{-1}(J)$ is a pseudo q-ideal of \mathfrak{X} .

(iv) Assume that J is a pseudo a-ideal of \mathfrak{Y} . Let $x, y, z \in X$ be such that $y \in f^{-1}(J)$, $(x * y) \diamond (0 * z) \in f^{-1}(J)$ and $(x \diamond y) * (0 \diamond z) \in f^{-1}(J)$. Then $f(y) \in J$ and

$$(f(x) * f(y)) \diamond (0 * f(z)) = f((x * y) \diamond (0 * z)) \in J,$$

 $(f(x) \diamond f(y)) * (0 \diamond f(z)) = f((x \diamond y) * (0 \diamond z)) \in J.$

Using (32), we get $f(z \diamond x) = f(z) \diamond f(x) \in J$ and $f(z * x) = f(z) * f(x) \in J$. Hence $z \diamond x \in f^{-1}(J)$ and $z * x \in f^{-1}(J)$. Therefore $f^{-1}(J)$ is a pseudo a-ideal of \mathfrak{X} .

Now, suppose that f is bijective. Let $a,b,c\in Y$. Then $f(x_a)=a,$ $f(x_b)=b$ and $f(x_c)=c$ for some $x_a,x_b,x_c\in X$. Assume that I is an associative pseudo

ideal of \mathfrak{X} . Let $(a*b)\diamond c\in f(I)$ and $b\diamond c\in f(I)$. Then there exist $x,y\in I$ such that $f(x)=(a*b)\diamond c$ and $f(y)=b\diamond c$. It follows that

$$f((x_a * x_b) \diamond x_c) = (f(x_a) * f(x_b)) \diamond f(x_c) = (a * b) \diamond c = f(x) \in f(I)$$

and

$$f(x_b \diamond x_c) = f(x_b) \diamond f(x_c) = b \diamond c = f(y) \in f(I).$$

Hence $(x_a * x_b) \diamond x_c \in I$ and $x_b \diamond x_c \in I$, which imply from (23) that $x_a \in I$. Similarly, if $(a \diamond b) * c \in f(I)$ and $b * c \in f(I)$, then $a \in f(I)$. Therefore f(I) is an associative pseudo ideal of \mathfrak{Y} . Suppose that I is a pseudo p-ideal of \mathfrak{X} . let $b \in f(I)$, $(a * c) \diamond (b * c) \in f(I)$ and $(a \diamond c) * (b \diamond c) \in f(I)$. Then there exist $x, x_\diamond, x_* \in I$ such that f(x) = b, $f(x_\diamond) = (a * c) \diamond (b * c)$ and $f(x_*) = (a \diamond c) * (b \diamond c)$. It follows that $b = f(x) \in f(I)$ and

$$\begin{array}{ll} f((x_a*x_c)\diamond(x*x_c))&=&(f(x_a)*f(x_c))\diamond(f(x)*f(x_c))\\ &=&(a*c)\diamond(b*c)&=f(x_\diamond)\in f(I), \end{array}$$

$$f((x_a \diamond x_c) * (x \diamond x_c)) = (f(x_a) \diamond f(x_c)) * (f(x) \diamond f(x_c))$$

= $(a \diamond c) * (b \diamond c) = f(x_*) \in f(I)$.

Hence $(x_a * x_c) \diamond (x * x_c) \in I$ and $(x_a \diamond x_c) * (x \diamond x_c) \in I$, which imply from (19) that $x_a \in I$. Thus $a = f(x_a) \in f(I)$, and so f(I) is a pseudo p-ideal of \mathfrak{P} . Assume that I is a pseudo q-ideal of \mathfrak{X} . Let $b \in f(I)$, $a * (b \diamond c) \in f(I)$ and $a \diamond (b * c) \in f(I)$. Then f(x) = b, $f(x_*) = a * (b \diamond c)$ and $f(x_o) = a \diamond (b * c)$ for some $x, x_*, x_o \in I$. It follows that

$$f(x_a * (x \diamond x_c)) = f(x_a) * (f(x) \diamond f(x_c)) = a * (b \diamond c) = f(x_*) \in f(I)$$

and

$$f(x_a \diamond (x * x_c)) = f(x_a) \diamond (f(x) * f(x_c)) = a \diamond (b * c) = f(x_b) \in f(I).$$

Hence $x_a \diamond (x * x_c) \in I$ and $x_a * (x \diamond x_c) \in I$. Using (26), we have $x_a * x_c \in I$ and $x_a \diamond x_c \in I$, and so

$$a*c = f(x_a)*f(x_c) = f(x_a*x_c) \in f(I)$$

and

$$a \diamond c = f(x_a) \diamond f(x_c) = f(x_a \diamond x_c) \in f(I).$$

Consequently, f(I) is a pseudo q-ideal of \mathfrak{Y} . Finally, suppose that I is a pseudo a-ideal of \mathfrak{X} . Let $b \in f(I)$, $(a*b) \diamond (0*c) \in f(I)$ and $(a \diamond b) * (0 \diamond c) \in f(I)$. Then there exist $y, y_{\diamond}, y_{*} \in I$ such that f(y) = b, $f(y_{\diamond}) = (a*b) \diamond (0*c)$ and $f(y_{*}) = (a \diamond b) * (0 \diamond c)$. Hence

$$\begin{array}{ll} f((x_a * y) \diamond (0 * x_c)) & = & (f(x_a) * f(y)) \diamond (f(0) * f(x_c)) \\ & = & (a * b) \diamond (0 * c) = f(y_{\diamond}) \in f(I) \end{array}$$

and

$$\begin{array}{ll} f((x_a \diamond y) * (0 \diamond x_c)) & = & (f(x_a) \diamond f(y)) * (f(0) \diamond f(x_c)) \\ & = & (a \diamond b) * (0 \diamond c) = f(y_*) \in f(I). \end{array}$$

It follows that $(x_a * y) \diamond (0 * x_c) \in I$ and $(x_a \diamond y) * (0 \diamond x_c) \in I$. Since I is a pseudo a-ideal of \mathfrak{X} , we have $x_c \diamond x_a \in I$ and $x_c * x_a \in I$ by (32). Therefore

$$c \diamond a = f(x_c) \diamond f(x_a) = f(x_c \diamond x_a) \in f(I)$$

and

$$c * a = f(x_c) * f(x_a) = f(x_c * x_a) \in f(I).$$

Consequently, f(I) is a pseudo a-ideal of \mathfrak{D} .

REFERENCES

- 1. W. A. Dudek and Y. B. Jun, Pseudo BCI-algebras, East Asian Math. J. (to appear).
- G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, Combinatorics, computability and logic (Constanta, 2001), 97–114, Springer Ser. Discrete Math. Theor. Comput. Sci. Springer, London, 2001.
- Y. B. Jun, Characterizations of pseudo-BCK algebras, Sci. Math. Jpn. 57 (2003), no. 2, 265-270.
- Y. B. Jun, H. S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik, 58 (2006), 39-46.
- Y. B. Jun, M. Kondo and K. H. Kim, Pseudo-ideals of pseudo-BCK algebras, Sci. Math. Jpn. 58 (2003), no. 1, 93-97.
- Y. L. Liu, S. Y. Liu and Y. Xu, Pseudo-BCK algebras and PD-posets, Soft Comput. 11 (2007), 91-101.
- Y. L. Liu, J. Meng, X. H. Zhang and Z. C. Yue, q-ideals and a-ideals in BCI-algebras, Southeast Asian Bull. Math. 24 (2000), 243–253.
- X. H. Zhang, H. Jiang and S. A. Bhatti, On p-ideals of a BCI-algebra, Punjab Univ. J. Math. 27 (1994), 121-128.

Kyoung Ja Lee received her Ph.D degree from Yonsei University, Korea, in 2000. From 2001 to 2002, she was a Post-Doc researcher at Korea University, Korea. She is currently a faculty member of the Hannam University in Daejeon, Korea. Her research interests are in the areas of Fuzzy algebraic structure, BCK/BCI/d-algebraiac structure, Homological algebraic structure, and Representation theory.

Department of Mathematics Education, Hannam University, Daejeon 306-791, Korea e-mail: kjlee@hnu.kr

Chul Hwan Park received his B.S., M.S. and Ph.D. degree from the Department of Mathematics of University of Ulsan,Korea, in 1986,1988 and 1997 respectively. From 1997 to 1998, he was a researcher at the Institute of Basic Science,The Kyungpook National Universty,Korea(supported by KOSEF). He is currently a full time lecture at the Department of Mathematics in University of Ulsan,Korea since 2005. His research interests are in the areas of Fuzzy Algebraic Structure,BCK-algebra,Quantum Structure,semigroup and Commutative ring.

Department of Mathematics, University of Ulsan, Ulsan 680-749, Korea e-mail: skyrosemary@gmail.com