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PROXIMAL AUGMENTED LAGRANGIAN AND
APPROXIMATE OPTIMAL SOLUTIONS IN NONLINEAR
PROGRAMMING

ZHE CHEN *, HAI QIAO HUANG AND KE QUAN ZHAO

ABSTRACT. In this paper, we introduce some approximate optimal solu-
tions and an augmented Lagrangian function in nonlinear programming, es-
tablish dual function and dual problem based on the augmented Lagrangian
function , discuss the relationship between the approximate optimal solu-
tions of augmented Lagrangian problem and that of primal problem, ob-
tain approximate KKT necessary optimality condition of the augmented
Lagrangian problem, prove that the approximate stationary points of aug-
mented Lagrangian problem converge to that of the original problem. Our
results improve and generalize some known results.
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1. Introduction

Tt is well known that dual method and penalty function method are popular
methods in solving nonlinear optimization problems. Many constrained opti-
mization problems can be formulated as an unconstrained optimization prob-
lem by dual method and penalty function method. Recently a general class of
nonconvex constrained optimization problem has been reformulated as uncon-
strained optimization problem via augmented Lagrangian(1].

In [1] Rockafellar and Wets introduced an augmented Lagrangian for mini-
mizing an extended real-valued function. Based on the augmented Lagrangian,
a strong duality result without any convexity requirement in the primal problem
was obtained under mild conditions. A necessary and sufficient condition for the
exact penalization based on the augment Lagrangian function was given[1]. Chen
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et al.[2] , Huang and Yang[3] used augmented Lagrangian functions to construct
the set-valued dual functions and corresponding dual problems, obtained weak
and strong duality results of multiobjective optimization problem. And many
literatures are devoted to investigate augmented Lagrangian problems. Neces-
sary and sufficient optimality conditions, duality theory, saddle point theory as
well as exact penalization results between the original constrained optimization
problems and its unconstrained augmented Lagrangian problems have been es-
tablished under mild conditions (see,e.g.,[4,6,7,8,9,15] ). It is worth noting that
most of these results are established on the basis of assumption that the set of
optimal solutions of the primal constrained optimization problems is not empty.

However many mathematical programming problems do not have an optimal
solution, moreover sometimes we do not need to find an exact optimal solution
due to the fact that it is often very hard to find an exact optimal solution even
if it does exists. As a mater of fact, many numerical methods only yield ap-
proximate optimal solutions thus we have to resort to approximate solution of
nonlinear programming({10,11,12,13,14]). In [10] Liu used exact penalty func-
tion to transform a multiobjective programming problem with inequality con-
straints into an unconstrained problem and derived the Kuhn-Tucker conditions
for e-Pareto optimality of primal problem. In [14] Huang and Yang investigated
relationship between approximate optimal values of nonlinear Lagrangian prob-
lem and that of primal problem. As we known, Ekeland’s variational principle
and penalty function methods are effective tools to study approximate solutions
of constrained optimization problems and the augmented Lagrangian functions
have some similar properties of penalty functions. Thus it is possible to apply
them in the study of approximate solutions of constrained optimization prob-
lems.

In this paper, based on the results in [10] and [14], we investigate the possi-
bility of obtaining the various versions of approximate solutions to a constrained
optimization problem by solving an unconstrained program formulated by using
an augmented Lagrangian function. As an application, a KKT type optimality
condition is obtained for a kind of approximate solution to the augmented La-
grangian problem and we prove that the approximate stationary points of gener-
alized augmented Lagrangian problem converge to that of the original problems.

The paper is organized as follows. In section 2, we present some concepts,
basic assumptions and preliminary results. In section 3, we deal with the rela-
tionship between approximate solutions of augmented Lagrangian problem and
that of the original problem. In section 4, we obtain an approximate KKT
type optimality condition of augmented Lagrangian problem and prove that the
approximate stationary points converge to that of the original problem.

2. Preliminaries

Tn this section, we present some definitions and Ekeland’s variational prinei-
ple. Consider the following constrained optimization problem:
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(P)  inf f(z)
st. zelX,
g;(z) <0 j=1.m,
where X C R" is a nonempty and closed set, f: X —> R, g; : X — R, f and
g; are continuously differentiable functions. Let S = {z € X, g; () 0,5 =

1,...,m}, it is clear that S is the set of feasible solutions. For any € > 0, we
denote by S, the set of ¢ feasible solution, i.e.,

Se={reX:gj(x)<ej=1,.,m}

and by Mp the optimal value of problem (P).
Let v € IR. We define a function FF: R® x R — R

F(w,U)z{ f(@), if gi(z) <w

400, else.
So we have a perturbed problem
(P*) inf F(x,u)
st. ze€R"
Define the optimal value function by p(u) = mééngn F(z,u), obviously p(0) is the
optimal value of problem (P).

Definition 2.1 [1]. A function ¢ : IR™ — IR U {+oo} is said to be an
augmented function if it is proper, l.s.c., convex with the unique minimum value
Oat 0 € R™

Define the dualizing parameterization function:
folz,u) = f(z) + 6rm (G(2) + u) + 0x(z), =z € R",u€R™, (2.1)
where G(z) = {g1(x), ..., gm(z)}, dp is the indicator function of the set D, i.e.,

0, if z € D;
Op(z) = { 400, else.

So a class of augmented Lagrangian of (P) with dualizing parameterization func-
tion fp{x,u) defined by (2.1) can be expressed as

ly(z,y,7) = inf{f,(z,u) — (y,u) + ro(u) : u € R™} (2.2)

When o(u) = ; | u ||?, the above abstract augmented Lagrangian can be

formulated as the following proximal augmented Lagrangian (Example 11.57
in [1]).

- if gj(z) < —y;/r. 23)

In this paper, we will focus on the problems about proximal augmented La-
grangian.

T + , if gi(z) = —y; /75
Lz, y, +Z{ ngj (z) zgj( z) g5(z) yi/
J=1
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The proximal augmented Lagrangian dual function corresponding [, is defined
as

¥p(y,7) = inf{lp(z,y,7);2 € IR"} y€IR™,r20 (2.4)
The proximal augmented Lagrangian dual problem is defined as
sup ¥p(y,r) subject to (y,r) € IR™ x (0,+00) (2.5)

The following various definitions of approximate solutions are taken from
Loridan/[11].

Definition 2.2. Let € > 0, the point z* € S is said to be an ¢ solution of (P) if
flz*) < flz)+e Vz el
Definition 2.3. Let ¢ > 0, the point z* € S is said to be an e-quasi solution of
(P)if
fey<s f@)+efjz—2*) VzeS

Definition 2.4. Let ¢ > 0, the point z* € § is said to be a regular ¢ -solution
of {P) if it is both an € solution and an e-quasi solution of (P).

Definition 2.5. Let € > 0, the point z* € S, is said to be an almost e solution
of (P) if

flz*) < flz)+e Vel
Definition 2.6. The point z* € § is said to be an almost regular ¢- solution of
(P) if it is both an almost e- solution and a regular e- solution of (P).

Proposition 2.7 [13]. (Ekeland’s variational principle) Let f : R* — R be
proper lower semicontinous function which is bounded below. Then for anye > 0,
there exists z* € S such that

0 f(z*) < f(z) +¢, Vzes
(@)f(@") < fl@) +ellz—=z" |, VeeS\{z"}

3. Approximate solutions of proximal augmented Lagrangian

In this section, we will discuss the relationship between approximate solutions
of proximal augmented Lagrangian dual problem (@) and that of primal problem
(P).

The following Lemma is about the strong duality results between augmented
Lagrangian dual problem and primal problem.

Lemma 3.1{1]. Assume f is proper and that its dualizing parameterization
function fp(z,u) is proper, Ls.c., and level-bounded in x locally uniform in u.
Suppose that there exists (§,7) € IR™ x (0, +00), such that

inf{l(z,,7) : x € IR"} > —o0
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Then zero duality gap holds:

p(0) = sup ¥y, )
(y,r)€IR™ x(0,400)
Proof. Please see it in [1. Theorem 11.59]. o

It is clear that when the abstract augmented Lagrangian dual problem is
formulated as proximal augmented Lagrangian dual problem, we can derive that

iz o)

= sup inf )+ f: { y—Jng + 59, i) %f () 2 =43/
(y,7)EIR™ % (0,400) TEX el W if g;(z) < —y;/r.
(3.1)
When g;(z) > —y;/r, the above expression (3.1) can be formulated as following:
m
LR - SR SUTIR RS TACI S

and the right side of (3.2) can be formulated as following

m
oy inf § () + Y [y395(2) + 597 (@)
(y,7)EIR™ x (0,+00) TE€3 ; 395 r
= lnf f z) + sup 73 (3'3)
BEIO T et sy 25
Combining (3.2) with (3.3), we can derive that
oy (50 =0 (3.4)

(y.r)EIR™ X (0,400) = 27

Theorem 3.2. Assume f satisfies all the conditions mentioned in Lemma 3.1,
then for any € > 0, there exists y € IR™ and r € IR such that every almost-¢
solution of (Q) is an almost -e solution (P).

Proof. From the assumption, we know that there exist z. € S, such that
b(ze,y,7) <lp(z,y,7) +€ Vz €S (3.5)

We consider following three cases: (a) —% < g;(z) < 0; (b) 0 < g;(z) < ¢ (c)
(1) we consider the case (a): from the definition of proximal augmented La-
grangian, we have that

by(ze 1) = flze) + D {uig5(me) + 503 )}
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m
r
(@, ,7) = £(&) + Y {u305(@) + 502 (@)}-
J=1
For z. € S, is a every almost-¢ solution of {Q), thus we can see that

F@ + 3 052 + 52w} < 1@ + 3 (0@ + LE@) +e. (36)
J=1 je=1

It is clear that y;g;(z) + 5g2(x) < 0, so we have that

F@)+ Y {439;@) + 593(@)} + € < fla) +e
i=1 ;

and

f@e) + Y {uigied) + 593(@)} < f@) +e,

i=1

oo + 3 ot ses(o) + S9@)} < @) +e
where Sy = {z € ¢ : —¥ < g;(z) <0}

Fw) = 3 () < Fla) +e

m 2
flze) < fz) + Z(g—;) +e 3.7
j=1

m 2

but from (3.4), we know that Z(%ﬁ;) — 0. So we can derive that f(z¢) <
i=t

flz) +e

(2) we consider the case (b): from the definition of proximal augmented La-
grangian, we have that

L@ y,r) = f@e) + Y {yi95(2e) + 593 (z )},

i=1

m
(@, v,r) = £(z) + Y_{1595(2) + 503(@)}-

i=1
For 0 < g;(z) < € and z. € S, is a every almost-¢ solution of (Q), thus we can
see that .

flze) < f(z) +e
(3) we consider the case (c): from the definition of proximal augmented La-

grangian, we have that.

m 2
(e, vy 1) = fz) — Y (50,
2=
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b(e,yr) = £(2) = Y ().
=1
For z. € S, is a every almost-e solution of (Q), thus we can see that

flze) < f(z) +e

From all of the three cases, we can draw a conclusion that every almost-e solution
of (Q) is an almost -€ solution (P).

Theorem 3.3. Assume f satisfies all the conditions mentioned in Lemma 3.1,
then for any € > 0, there exists y € IR™ and r € IR such that every regular
almost-¢ solution of (Q) is an regular almost -€ solution (P).

Proof. From the definition of regular almost-¢ solution , we need to prove fol-
lowing conclusion there exists z. € Se, such that

flz)) < f(x)+e Yz el (3.8)

flzd) < f(z)+ellz—2z"|| VzxeS (3.9)

However from Theorem (3.2), we have proved (3.8), and it is easy to check that
the proof of (3.9) is similar to that of (3.8), so we omit it. O

4. Approximate optimality conditions

In this section, we will discuss some approximate optimality conditions of
constrained optimization problem, obtain necessary condition for a approximate
solution of proximal augmented Lagrangian problem, prove that the first-order
approximate necessary optimality condition converges to that of the original
problem.

Let Z € S. We denote

J(Z)={j:9;@) =0,j=1,..,m}.
We say that the linear independence constrained constraint qualification (LICQ)
for (P) holds at z, if {Vg;(Z) : j € J1(&)} is linearly independent.
Suppose that Z € R™ is a local optimal solution to (P) and the (LICQ) for
(P) holds at # Then the first-order necessary optimality condition is that there
exists pu; > 0, j € J1(Z) such that

Vi@ + Y 1Vgi(E) =0
jeJi(E)

Proposition 4.1. Suppose T. € R" is a regular e-solution for (P) and the
(LICQ) for (P) holds at Z. € R™. Then first-order approximate necessary con-
dition is that there exists real number p;j(e) > 0,j = 1,...,m, such that

| Vi) + Y ni(e)Ve;(Te) |=e
3€JI(e)
where J(e) = {j : g;(Zc) = 0}
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Proof. From the definition of regular e-solution, we have that there exists Z. € S
such that

f@) < flx)+ellz—F| VeelS (4.1)

We conclude that Z. is a local optimal solution of the following constrained
optimization problem

Pry  inf {fl@)+elz-z|}
st. z€S.

For the objective function {f(z) + ¢ || £ — & ||} is only locally Lipschitz. Thus
we apply the corollary of Proposition 2.4.3 in [16] and obtain the KKT necessary
condition of (P*)

Vi@ + e+ Y. we)Ve(E) =0 €e[-1,1]

J€J(e)
It follows that
| Vi@) + D ui(e)Vgi(ze) IS e (4.2)
jed(e)
Suppose that z* is a local regular approximate optimal solution of (Q). Denote

k
J;-k == {j : g](:ck) > ""—"ri, g = 1,...,77];},

k
. Y .
H=(igl) =2, j=1..m

The following first-order approximate necessary condition of problem (Q) can
be straightforwardly derived.

Lemma 4.2. Let z¥ be a local regular e- solution of problem (Q). Then we have
that

Valp(F,y0,m8) = |VFE) + Y (e +9;=F)Vgeb) <e  (43)
jegfrJ sk

Theorem 4.3 (Convergence analysis). Suppose {yr} € R™ is bounded, 0 <

T — 400, ¥ € R™ be generated by some methods for solving the following
problem (Qr)

inf{l,(z, y*,r); ¢ € IR"}, y* € IR™, 1y 2 0.

We assume that each z¥ satisfies the first-order necessary optimaility condition
stated in Lemma (4.2) and z¥ — % € S. Furthermore suppose that the (LICQ)
for (P) hold at T. Then the approzimate first-order necessary condition for (P)
holds at .
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Proof. Since z¥ — I € S, we can see that J;*|JJF C Ji(%), when k is

sufficiently large. In the following, we assume that k is sufficiently large. Let
uf = y;-c —|—rkgj(mf),j € Ji(Z) ﬂJf’k; uf =0,j¢ Jl(a‘c)\Jf"k.
Then we have that

uk >0, je ) (4.4)
and (4.3) can be formulated as
| ViEE) + Y ufVg(ed) [<e (4.5)
j€J1(E)

Now we prove by contradiction that the sequence { Y. u¥} is bounded as
jeN(Z)
k — +co. Otherwise assume that without loss of generality that

JEJI(T)
and
uy .
Z % - U‘]? J€ Jl (x)
jeJi(z)
From (4.3) it is easy to check that u} > 0, € J1(Z). Dividing (4.4) by > u;-“
j€n(®)
and let it to the limit, we can see that
> ujvg(z) =0 (4.6)
jen(z)
This contradicts the (LICQ) of (P) holds at Z, since >, uj=1.
i€1(Z)
Hence{ ) %} is bounded, so without loss of generality, we assume that
JjE€J1(Z)
ub >y, jeJi(T) (4.7)

and it is clear that

u; >0, jeJ (7)
Thus taking limit in (4.5) as K — +oo and applying (4.7), we obtain the approx-
imate first-order necessary condition of (P). 0

5. Conclusions

As we know Lagrangian method is a powerful tool to transform the con-
strained optimization problem into an unstrained optimization problem. How-
ever it will cause dual gap between primal problem and dual one without some
convexity requirements. In [4, 7, 15], Huang and Yang introduced an augmented
Lagrangian and studied various properties of augmented Lagrangian problem
based on an assumption that the set of exact optimal solutions of the primal
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constrained optimization problem is not empty. But many mathematical pro-
gramming problems do not have an optimal solution, moreover sometimes we
do not need to find an exact optimal solution due to the fact that it is of-
ten very hard to find an exact optimal solution even if it does exists. And as a
mater of fact many numerical methods only yield approximate optimal solutions.
So in this paper, we consider the e-quasi optimal solution and the augmented
Lagrangian in nonlinear programming without the requirement that the set of
optimal solutions of the primal constrained optimization problems is not empty,
establish dual function and dual problem based on the generalized augmented
Lagrangian, obtain approximate KKT necessary optimality condition of the aug-
mented Lagrangian dual problem, prove that the approximate stationary points
of augmented Lagrangian problem converge to that of the original problem. Our
results generalized Huang and Yang’s corresponding results in [4, 7, 15] into ap-
proximate case which is more suitable for numerical test.
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