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ON COMPUTATION OF MATRIX LOGARITHM

NAGWA SHERIF AND EHAB MORSY*

ABSTRACT. In this paper we will be interested in characterizing and com-
puting matrices X € C"*" that satisfy eX = A, that is logarithms of A.
The study in this work goes through two lines. The first is concerned with
a theoretical study of the solution set, S(A), of eX = A. Along the sec-
ond line computational approaches are considered to compute the principal
logarithm of A, LogA.
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1. Introduction

For an n-by-n complex matrix 4, f(A) denotes the primary matrix function
associated with the stem function f(2) [11]. Computation of f(A) is a frequently
occurring problem in control theory [20], [25], mathematical modeling of dynam-
ical systems [3], and other applications. Indeed, there is extensive work in the
area of matrix exponential and matrix pth root computations [2], [6], [10], [13],
(19], [22], (23], [26]. However as reported in [4] the computation of matrix loga-
rithm is an important area demanding more work. This is one of our objectives
in this work.

Logarithms of matrices arise in various “system identification” problems con-
text, for example [1], [8], [24]. In this work we first study the set S(A) of
logarithms of an n-by-n complex matrix A, that is the solution set of the matrix
equation eX = A. Particular subsets of S(A) are discussed and characterized.
The case of real logarithm of a real matrix is of particular interest and will
be investigated in a separate work. Next we propose techniques to compute
LogA, the principal logarithm of A. These techniques have computational and
theoretical advantages. Finally we study sensitivity analysis of the logarithmic
function.
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We assemble the notation and preliminaries needed throughout the work in
Section 2. The theoretical aspects of the matrix equation eX = A and its
solution set S(A) are investigated in Section 3. The matrix identity LogAB =
LogA + LogB is central to our proposed algorithms. It is discussed in Section
4. Section 5 presents scaling strategies necessary to develop and improve the
algorithm proposed in Section 6.

2. Notations and preliminaries

We state briefly a number of useful concepts and facts which will be repeatedly
used in this work. In this work C will denote the field of complex numbers, C™
the set of all vectors of dimension n. Let C™*" is the set of all n-by-n complex
matrices. For a matrix A € C™*", the spectrum of A is denoted by o{A),
while the monic polynomial of the smallest degree that annihilates A is called
the minimal polynomial of A and is denoted by ¢(z). The spectral radius p(A)
represents the dominant eigenvalue of A, that is, p(4) = max {|A| : A € a(4)}.

A matrix A € C™*" is said to be normal if A*A = AA*, where A* is the
complex conjugate transpose of A. A matrix U € C™*" is called unitary if
U*U = I, in addition, if U € R**", U is called orthogonal. The spectrum of the
unitary and orthogonal matrices lies on the unit circle. Also an n-by-n matrix
A is said to be hermitian (skew hermitian) if A* = A (A* = —A). In this case
o(A) C R (0(A) C iR). A matrix A € C™*" is said to be positive definite if A
is hermitian and z*Az > 0, for all z € C™, z # 0. The class of positive stable
matrices is another important particular class of matrices. A matrix A € C™*"
is said to be positive stable if ReX > 0 for every A\ € o(A). Let logz, z # 0
denote the multiple valued function, logz = Log|z| + i(argz + 27k), k € Z.
Consider the single value defined by Logz = Log|z| + 6, —7 < 8 < 7. Then
Logz is a branch of log z in the domain D, = C\ {z: 2 < 0} and it is called the
principal branch of log z.

Let A € C™*™, and let s; be the multiplicity of A\; € o(A) as a root of the
minimal polynomial of A. Then the scalar valued function f(z) is said to be
defined on o(A) if f(z) is defined and has successive derivatives up to s; — 1 at
A; for each A; € o(A).

For suitable assumptions on an n-by-n matrix A and a scalar function f(z),
we have different definitions of the matrix function f(A4), [2], [4], [12], [15], [21].
Often f(A) is called primary matrix function associated with stem function f(z).
In our work we use the Jordan canonical form and integration definitions of such
matrix function. If A is diagonalizable then the matrix function f(A) is also
diagonalizable. However if A4 is not diagonalizable, f(A) may be diagonalizable.
Based on the nature of the scalar function f(z) and the spectrum of the un-
derlying matrix A, the next theorem investigates the Jordan structure of f(A)
[12].

Theorem 1. Let Jpn, (M) be an my-by-my, Jordan block with eigenvalue Ay,
suppose f(z) is a scalar-volued function which is (my — 1)—times differentiable
at M. If f(X) #0, the Jordan canonical form of f(Jm, (At)) is the single block
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Ime (FO)). Let 1 < p < my be given and my = pg+ 7, with0 < r < p. If
FOR) = ) =...= fo () =0 and either p = my or fP(A) # 0,
the Jordan canonical form of f(Jm.(Mx)) splits into exactly p blocks, each of
which has an eigenvalue f(\g); there are p — r blocks Jo(f(Mx)) and r blocks
Jq+1 (f()\))

If A€ C™*™ and B is a polynomial in A, say p(A), then clearly A and B are
commuting. However, the converse is not necessarily true. The next theorem
gives a sufficient condition for B to be a polynomial in A [11].

Theorem 2. Let A € C™*™ be a given nonderogatory matriz. A matriz B €
C™ ™ commutes with A if and only if there is a polynomial p(z) of degree at
most n — 1 such that B = p(A).

3. Solution set of eX = A

For an n-by-n matrix A, let

S(4) = {Xeom . & =4}
Sp(A) = {X€C0™": ¢X = Aand X = p(A4), p(2) is a polynomial }
Sp(4) = {X €C™":eX = A and X is diagonalizable}.

The solvability of the given matrix equation is completely characterized by the
following theorem.

Theorem 3. Let A be an n-by-n compler matriz. A sufficient and necessary
condition for the solvability of the matriz equation eX = A is that the scalar
equation € = )\; is solvable, for each A\ € o(A), 1 < i < n. That is, the
equation s solvable, if, and only if, A is nonsingular.
Proof. Let A have the Jordan canonical form A = SJ4S™1 = Sdiag(Jm, (A1),

,Jmp(/\p))S_l. Assume that for each 1 < ¢ < n, there is an z; such that
e*i = );. Set

JIx = diag(Jm, (%1); Imy (22), - -+ Im, (Tp))-
We show that there exists a matrix X € C™*"?, that is similar to Jx and such
that eX = A. The Jordan structure of the matrix e’* is completely determined
by the function f(z) = e*; Theorem 1. Indeed the Jordan canonical form of elx
has the form diag(Jm, (€°1), Jm, (€*2), ... , Jm, (7)) which by our assumption
is J4. Now, it turns out that J4 and e’X are similar, and we have J4 =T elx
T~1, for a nonsingular matrix 7. This gives
A=S8J4 81 =8T(e/X)T7187 = Re/XR7,

where B = ST. Hence eX = A with X = R Jx R™!. This establishes the
sufficiency part, the necessary part is immediate by using the Jordan canonical
form definition of the matrix exponential

eX = Vdiag(Jm, (€%1), Ty (6%2), . ., I, (€"*))V T,
where X = Vdiag(Jm, (T1), Jmy (T2); - - - » Jm, (Tp))V 1. a
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A solution X that is constructed in the previous theorem depends on the
choices of the solutions to the scalar equation e* = A;, 1 < ¢ < n. For any
arbitrary solution set {z;};._, , there is no guarantee that the constructed X will
be a polynomial in A. In the next theorem we give the necessary and sufficient
conditions for such X to be polynomial in A.

Theorem 4. Let A € C™*", be a nonsingular matrizc with Jordan canonical
form

A =S diag(Jm, (\1), Jmg (R, -+ Jim, (Ap)) 57 (1)

Then X € S(A) is o polynomial in A if and only if the same value of the scalar
logarithm is used for the same eigenvalue of A, that is, if €™ = Ay for every
k=1,2,...,p, then \; = X; implies that z; = z; for all1 < 4,5 < p.

Proof. Let X be a logarithm of A and suppose that the same branch of the
scalar logarithm is used for the same eigenvalue of A. Let z1,%2,...,, be the
distinct eigenvalues of X and let

Jo = diag(Jn(zl,X) (.’81), Jn(.’zz,X) (182), ey Jn(:c,,s,X)(xu))a
where n(z, X') denotes the multiplicity of  as a root of the minimal polynomial of
X. Clearly 0(J;) = 0(X) and n(z, J.) = n(z, X) for every € 0(X). According

to Theorem 1, no splitting of the Jordan blocks occurs due to the exponential
function, so that e’ is similar to

diag(Jn(zy, %) (€ ), n(zs,x) (€), - - - 1 In(z,, x) (€7))-
By our choice of zx, 1 < k < u and our assumption, e*1,e%2, ..., e"» are distinct
and consequently e’ is a nonderogatory matrix. On the other hand J, and e’

are commuting. Therefore, by Theorem 2, there exists a polynomial p(z) such
that J, = p(e’s).Consequently

In(e,7.)(Z) = ple7ne 1) (2)) for all z € o(J;). (2)

Hence from equation (2), and since n(z, J;) = n(z, X), we obtain Jy(g x) =
p(e/n@x)) for all z € o(X), and hence Jyzx) = p(e»=x)) implies that
Iz, x) = p(elm@x))for all m(z, X) < n(z, X). Therefore, X = p(eX) = p(A).
Conversely if X € Sp(A) then it is clear that A\; = o impliesthat ¢1 =22 . O

The next theorem describes the structure of any element X € S{A).

Theorem 5. Let A € C™*" be a nonsingular that has the Jordan canonical
form A = 8J87! = Sdiag(Jm, (M), .- , Jm,(Ap))S™L. Then all logarithms of
A are given by :

X = SU diag(log¥) (Jm, (1)), 10892 (Jiny (A2)), - - - ,10gY%) (I, (Ap))) UTESE,

where jx € Z, k = 1,2,...,p, and U is an arbitrary nonsingular matriz that
commutes with J and log(’ )2 is a branch of log z.
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Proof. Suppose that X is a logarithm of A, that is a solution of the matrix
equation eX = A. The scalar function f(z) = e” never vanishes, this implies
that X and A will have the same number and sizes of Jordan blocks, Theorem
1. So the Jordan canonical form of X is given by

Jx = diag(Jm, (%1), Ima (@2)s - - -, Im, (2p)),

where zj satisfies the scalar equation e®* = X;, 1 < k < p. Suppose that

Ty = log(j’“) Ak, where log(j")()\k) denotes a branch of the logarithm in the
neighborhood of Ag. Set

Y = diag(LYV, L9, ..., L)),

where Lgk) = 10g"") (Jpm, (A&)), jk € Z. Tt is clear from the structure of L;cj’“)
that it does not have any splitting, hence Y and X will have the same Jordan

canonical forms, that is, there exists a nonsingular matrix T € C™*" such that
X =TYT!, but eX = A, hence

A = YT =TT = Tdiag(eL?” engQ) eLYp))T_1
= Tdiag(Jm (M) Jma(A2)y -+ s T )T~ =TJIT 1.

It is known that if A = SJS™' and A = TJT !, then T = SU where U
commutes with J. Consequently we have

X = SUdiag(log" (Jpm, (A1), . . . ,10gY97) (T, Dp)))U 1S (3)
0

A direct consequence of Theorem 1 and the previous theorem is that any
X € S(A) will have the same Jordan structure as A. In particular if A is
nonsingular matrix then X is diagonalizable if and only if A is diagonalizable.
This implies that S(A) = Sp(A) if and only if A is diagonalizable.

For a matrix A € C™ " with S(A) # ¢, we discuss the cardinality of S(A).
Clearly the scalar equation e* = X has a countable number of solutions in C.
The question arises whether S(A) is also countable. To discuss the countability
of S(A) we need the following lemma.

Lemma 1. Let Jp,, (\y) be a Jordan block of order mi, Ax # 0. Then Jum, (Ak)
has a countable set of logarithms, each is given by

. _ —(my —1)
logP Ay 1A ... —EMLTE—
, (@ :
10g(J)(Jmk()\k)) _ 0 log ‘ ) VAR : (4)
0 0 log(j) Ak

where log" Ay, is a branch of log z in a neighborhood of Ak (logP \x = Log | Ax|+
(Arg), + 277)i and j € Z). Furthermore each logarithm is a polynomial in A.
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Proof. Suppose that X is a logarithm of J,,, (\t), that is, eX = Jp, (A). Since
X commutes with Jp,, (Ax), and since Jp,, (Ax) is nonderogatory matrix, so by
Theorem 2 there is a polynomial p(z) such that X = p(Jm, (M) Jm, (M) is
upper triangular, which implies that X is upper triangular with equal diagonal
elements. From the commutativity of X and J,, (Ax), we conclude that X takes
the particular form X = D + N =z, + N, where e*! = A and

0 X2 T3 ... Tomy,

0 0 z2 ... Zme—1
N=|:1 & 1 " :

0 0 0 Ta

0 0 0 ... 0

There are countably many solutions of e*! = Ag, 21 = log(j} Ak, J € Z where
log!?) Ay is a branch of the logarithm in the neighborhood of Ag. It remains to
show that X has the form (4). Clearly N™ = 0, then Jp,, (Ax) can be written
in the form :

1
Jmi (M) =X = A eV =\ [I+N+ %N2+ L S ————)'Nmk-lJ .

éi (mk -1
For n-by-n matrix B with ones in the first superdiagonal and zeros otherwise,
I (M) can be written as
My =1 >\k mg -1
_ v\me—1
I k) = Med + Mg ; Top1B 4.+ e 1)!( 2 Tyq1 BY)™ 1,

equating the coefficients of the powers of B in both sides, we get

1 1
Ml + B = M + (Mpz2)B + Ai(zs + -2—.73%)32 + Ax(z4 + 223 + 5—,:1)3)33 4.
This in turn implies that z, = (—1)9/(¢ — 1) /\z_l forall ¢ =2,3,...,mg. Now
it follows from Corollary 5 that S(A) = S,(A), and indeed every logarithm of a
Jordan block is a polynomial in it. O

Theorem 6. Let A € C™"™ be a nonsingular matriz with distinct eigenvalues
ALy A, ... Ay and let A have Jordan canonical form
A= 8JS = Sdiag(Jm; (M) - - Jm, (Mp)) ST

If u < p, then there exists an uncountable number of logarithms of A, among
those there exists a countable set of logarithms that are polynomials in A. If
i = p, that is, if A is nonderogatory, then the logarithms of A are countable and
each of them is polynomial in A.

Proof. Theorem 5 implies that any logarithm of A has the form
X = SUdiag(log" (Jm, (1)), - - - , 10g"%%) (Jm, p)))U ST, (5)

where U is any nonsingular matrix that commutes with J. When p < p, it
may happen that U does not commute with logJ and in this case there are
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uncountable logarithms of A since there are uncountable matrices that commute
with J . On the other hand if the same branch of the scalar logarithm is used
for Jordan blocks with the same eigenvalues, that is, jz, = ji, When Ay, = Ay,
then log J is a polynomial in J, Theorem 4. In this case U commutes with log J,
so (5) implies that X = Slogt) JS—1. Now this in turn implies that Sp(A) is
countable.

If 4 = p then J is nonderogatory matrix and any logarithm logJ of J is
a polynomial in J. It follows that U commutes with logJ, and hence all the
logarithms of A are countable and polynomials in A. O

If two or more Jordan blocks of an n-by-n nonsingular matrix A correspond

to the same eigenvalue, we get a parameterized family of solutions as indicated
by the following corollary.

Corollary 1. Let A € C™ ™ be a nonsingular matriz, with Jordan canonical
form A = SJS™' = S diag(Jm; (M), - .- s Im, (Ap)) S™1, where A, Ao, ..., Ap
are not necessarily distinct. For a fized j(°) = (j§°),j§°),... L35, j,(eo) € Z,
0 < k < p, there exists an uncountable set of logarithms of A, each is given by

. (@) ) 1 e
Xj(O)(U) =5U dmg(logjl (Jm1 ()\1)), v 7IOgjp (Jmp ()‘p)))U ! S !

where U is any nonsingular matriz that commutes with J. The members of this
parametrized family have a common spectrum.

We end this section by characterizing those matrices A for which the matrix
equation eX = A has a solution belonging to a particular class of matrices.
Results in this direction for general f(A) can be found in [11].

Lemma 2. Let A € C™ " be a nonsingular matriz, then A has a normal loga-
rithm if and only if A is normal.

Proof. Suppose that A has a normal logarithm X . Then there exists a uni-
tary matrix U € C™ ", such that X = U diag(z1,2,...,2n) U*, where
T1,T2,...,Zn € 0(X), and €% = ); for all i = 1,2,...,n. Hence, we have

A =X =U diag(e®,e™,..., ") U*

therefore A is normal with eigenvalues e*!,e*2, ..., e"".
Conversely, let A be normal and for every A € o(A), there exists z; € C
such that x; is a scalar logarithm of A; for all 4 = 1,2,...,n. Then there exists

a unitary matrix U € C™*™ such that A = U diag(\1, A2, ..., As) U*, where
A, A2, ..., An are the eigenvalues of A. Let X = U diag( z1,%2,...,%n) U*; it
follows that X is normal and eX = U diag( €™, e%2,...,e*) U* = A. O

As a result of the previous lemma we can conclude that a normal matrix A
has a normal logarithm X with prescribed spectrum ¢(X) C K, K C C if and
only if the equation e* = X has solution in K for each A € o(A). In what follows
we characterize A so that LogA belongs to certain classes of matrices.
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Theorem 7. Let A € C™*™ he a nonsingular matriz, then

(a) There exists a hermitian logarithm of A if and only if A is positive
definite. This hermitian logarithm is unique.

(b) There exists a skew-hermitian logarithm of A if and only if A is unitary.

(c) There exists a unique positive definite (semi-definite) logarithm of A if
and only if A — I is positive definite (positive semidefinite).

(d) There ezists a unitary logarithm of A if and only if A is normal and for
every A € o(A) there exists © € C such that x is the scalar logarithm of
Aand |z =1.

Proof. Let A € C™*™ be nonsingular. It is well known that A is hermitian,
skew hermitian, positive definite or unitary if o(A) C R, iR, R*, or unit circle
respectively. In all the previous cases, A is normal. First we prove (a). By
using Lemma 2 and the obvious fact that the scalar equation e® = A has a
unique real solution if and only if X is positive real number, that is, A\ € R*.
Hence the matrix equation eX = A has a hermitian solution if and only if A4 is
positive definite. The uniqueness follows from Theorem 5. Next we prove (b).
There exists x € 4R such that ¢ = X 'if and only if A lies on the unit circle,
that is, if and only if A is unitary. The theorem is completely proved by taking
K = Ri(Ry)and K = {z € C\ |z| = 1} in (c) and (d) respectively in the
previous remark, where Ry = {#:2 > 0} and R, = {z: 2z > o}. O

In developing our algorithms for computing LogA, a need arises for the study
of the matrix identity LogAB = LogA + LogB. We study this matrix identity
in the next section. The discussion reveals different sets of sufficient conditions
for its validity.

4. On the identity LogAB = LogA + LogB

Let A, B € C™*" be nonsingular matrices. We seck conditions on the matrices
A and B such that the identity

LogAB = LogA + LogB (6)

is valid. The corresponding identity for the exponential function, eA1? = e4e?

has been thoroughly investigated by many authors, for example [12], [27]. How-
ever there is no known set of sufficient and necessary conditions to ensure that
(6) is satisfied. Clearly a necessary condition is that A and B are commuting.
The following example shows that commutativity of A and B is not sufficient.
Let A = diag(i,1) and B = diag(—1 + 4,1+ ). The commuting A, B do not
satisfy (6). It is well known that this identity, (6), is not always true even in the
scalar case. Indeed for 21,2 € D, one can show that

Logzy zy = Logz; + Logzs if and only if — & < Argz + Argze <. (7)
The next theorem gives a natural extension of (7) to the matrix case.

Theorem 8. Let A,B € C™*" be nonsingular simultaneously diagonalizable
matrices. Let § € C" ™ be nonsingular such that A = 8 diag(A1, X2, ..., An)
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S~1 and B = S diag(\}, Xy, ..., A\,) S~'. Then LogAB = LogA+ LogB if and
only if —m < Argh; + Arg)\; <m1<i<n.

Proof. 1t is clear from equation (7) and the conditions in the theorem that
LogAB = Sdiag(LogA + Log)\ll, ..., Logh, + Log/\/n)S_1 = LogA + LogB.
d
This theorem and [11, Theorem 1.3.12] imply the following result.

Corollary 2. Let A, B € C™*", be nonsingular diagonalizable commuting ma-
trices such that for any \; € o(A), and X, € 0(B) we have —m < Argh;+Argh; <
7. Then LogAB = LogA + LogB

The condition of simultaneously diagonalizable in Theorem 8 is sufficient but
not necessary. It straight forward to check that LogJa(N)Ja(p) # LogJa(X) +
LogJs () for arbitrary Jordan blocks. Indeed a sufficient and necessary condition
for LogJa(A\)J2(p) # LogJa()) + LogJa(u) is that —m < ArgA+ Argu < .

An instance where we can drop the condition that A is diagonalizable is
established in the following theorem.

Theorem 9. Let A € C"*" o(A) C D, and B = g(A) where g(z) is an analytic
function on Dy with range g(z) C D,. Assume that the inequality

- < Argh + Arg(g(N\) < 7, (8)
is valid on o(A). Then LogAB = LogA + LogB.

Proof. Tt is known [15, Theorem 5.7.1] that if G(u1, u2, . . . , us) is a polynomial in
U1, Uz, - . . ,us and if f1(2), f2(2), ... fs(2) are functions defined on the spectrum
of the matrix A € C™*™ such that the function g(z) = G(f1(2), f2(2), ... fs(2)) is
zero on the spectrum of A, then G(f1(A), fa(4), ... fs(A)) = 0. For G(u1,u2,u3) =
ur — s — 3 where f1(2) = Log(29(2)), fa(2) = Logz, and fa(2) = Log(g(2),
and using (8) we get

G(f1(2), f2(2), f3(2)) = Log(2g(2)) — Logz — Log(g(2)) = 0

on o(A). Hence G(fi(A), f2(4), fs(4)) = 0, that is, Log(Ag(A)) = LogA +
Log(g(A)). O

In the next section we develop particular techniques to transform a given ma-
trix A, so that the spectrum of the transformed matrix satisfies certain inclusion
properties. We call these techniques scaling strategies.

5. Scaling strategies

Let A be an n-by-n complex matrix with o(A4) C D,. We discuss different
scaling strategies to transform A to As., so that o(As.) is clustered around 1 and
diam(o(Asc)) is "small”. In particular we require that o(Asc) C {2z : |z — 1| < 1}.
Identity (6), when applicable, will be essential so that LogA,. can be related to
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LogA. An efficient scaling strategy will be shown to rely on the structure of the
matrix A, in particular on the distribution of eigenvalues of A.

Next, we develop simple and successive scaling strategies. We discuss the
range of applicability and computational merits of each one. Also we comment
on the actual implementation of such strategies.

5.1. Simple scaling

Let A € C™*" with 0(A) C RY, suppose that A; > X2 > ... > A, > 0, which
is the case for particular classes of matrices (positive definite and M-matrices).
An estimate for a scaling factor, m,,, so that Ay, = RL;A has the desired spectral
properties, is given in the next lemma.

Lemma 3. Let A € C™*™ with 0(A) C RY and Ay > A2 > ... > XAy >0 be the
eigenvalues of A. Choose mg, = ilizﬁt, then the transformed matriz A;e = m1 A

sc

has spectrum o(Asc) with diam(o(Ase)) < 2 and o(Ase) C [%f, %}, with
a = }\I/An !

Proof. 'The proof is immediate since it is easy to check that scaling A by the
positive real number mg, = (A + )\n)/ 2, forces the eigenvalues of the scaled

matrix to lie in the interval { . We note that this interval is symmetric

Fi a+1
around 1. O

If o(A) is not a subset of RY, but A is positive stable, we can devise a
technique for estimating m,,. as follows.

If o is a positive real number such that 0 < @ < Rel < [A| < p(4) for all
A € o(A), a suitable choice of my, satisfies mse > p(A)2 /(2c). For this ch01ce
of Mg, we have for any A € o(A)

W2 _ p(4)? < 20 _ 2(Re})
'm2 - m2 msc T Mg
and hence {A/m,. — 1| < 1. Thus, we have proved the following result.
Lemma 4. Let A € C"™ " be a positive stable matriz. If o is a positive real
number such that 0 < o < Re) < |A| < p(A) for every A € 0(A), then a scaling
factor mg. for which ’mic - 1. <1, A€ a(A) is given by msc > p(A4)?/(2c).

If we assume for the moment that LogA,. can be computed by some means,
then upon invoking Theorem 9 we can recover LogA by the matrix identity

LogA = LogAs.: + (Logmsc)I. 9)

In some appropriate classes of matrices the value of o in the above lemma
is easily obtained. For example if A is a nonsingular normal matrix, then for
H = (A* + A) we have o(H) = {2ReX: XA € 0(A)} [5]. Consequently 2o =
min{p: p € o(H)}.

5.2. Successive scaling
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A powerful technique of scaling A € C™*™ with spectrum |A1] > [Ag| > ... >
|An| > 0 is to start by scaling A with m,. to give A; = m—lsc-A, then scaling A;
using inverse scaling and squaring technique; Kenney and Loab [14], namely

Age = A%/y = (A/msc)1/2j for some j € N.

In this case the scaling factors ms. and j can be chosen so that the scaled
matrix A,. has eigenvalues close enough to 1. Finally we compute LogA from
the relation

LogA = 29 LogA. + (Logmse)I. (10)

Matrix identities in (9) and (10) are special cases from the identity LogAB =
LogA + LogB, Theorem 9.

Let A € C™ ™ with spectrum o(A) = {A1,A2,...,An}. One method of

computing ¢ in Lemma 4 is to let B = A'/2, the principal square root of A, so the

corresponding o(B) = {A;,A;, e ,Xn}, where )\; = )\3/2 foralli=1,2,...,n.

Since the spectrum of A lies in the left half plane. A is positive stable necessitates
that

A =N e —m/a< ¢ < T/4

Now Re); = |X;| cos ¢; > |X}|/+/2, and o can be taken to be min |Aj|/v/2. There-
fore B can be scaled by the scaling factor of the Lemma 4 and then LogB is
computed via relation (9). Finally LogA is given by

LogA = 2LogA'? = 2LogB.

Successive scaling will be repeatedly used in our developed algorithms to

compute LogA. This strategy is summarized in the following algorithm, scaling
algorithm.

Algorithm.1 (Scaling algorithm) If A € C™*"™ and my. and j are given, the
following algorithm computes the scaled matrix As. = (4/ msc)l/ z,

Ase =scale(A, mge, )

Input Aa msc’j

A = m1 A

1/27
Age = AY
end.

In implementing the previous algorithm, the scaling factor my. is suggested
to be (JA1] + |An|)/2, where ); is the dominant eigenvalue of A computed using
power method [16, p. 364] and the minimum eigenvalue A, is the reciprocal of
the dominant eigenvalue of A~!. The square roots are computed by using Schur
decomposition [2].

6. Computation of LogA
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In this section we are interested in computing a particular element of S(A),
the principal logarithm LogA. We develop different approaches to compute
LogA. These approaches have theoretical as well as computational advantages.
In fact, one of these approaches establish new representations of LogA, Section
6.2. Our proposed algorithms are iterative in nature, hence we provide an error
estimate for the approximation of LogA.

6.1. Series and rational approximation

One effective method for approximating general matrix function f(A) is through
the truncation of its Taylor series. This general technique can be adapted to
compute LogA. The Taylor series approximation of LogA for a nonsingular 4 is
given by

_ U4
LogA = — Z A (11)
k=1
provided this matrix series is convergent, that is, if and only if
A~y <1 (12)

Condition (12) necessitates that o(A) C {z : |z — 1| < 1}. For an arbitrary non-
singular matrix A, this condition can be realized for the scaled matrix A,.. Here
A is obtained by the scaling algorithm, Section 5.

For a nonsingular matrix A Golub and Loan [4] give an error bound on ap-
proximating f(A) by its truncated Taylor series. Mathias [18] improves this
error bound to be independent of the size of the underlying matrix. The latter
result, when adapted to our case, yields the following error estimate.

Theorem 10. Let A € C™*" be nonsingular with p(A —I) < 1, then
g

LogA — Z :kl(] — A)F
k=1

<wyas
(g+ 1) 0<s<1

(I — AT - s(I - A)]-@“)“ .
(13)

Another general technique for computing f{A) is by rational approximation.
The Padé approximation of LogA can be developed as follows. Let f(z) =

o0
Log(l1-2)=- 3, %; Set the rational function
k=1

Pr(2)

gm(2)’

where p and gy, are polynomials in z of degree at most k and m, respectively.
Then Ry, (2) is called (k,m) Padé approximant of f if Ry, agrees with f up
through order k + m. Now, we can get the Padé approximant of LogA as

Rim(A) = pe(I = B)(gm(I - B))™"

where B = I — A. Several methods are analyzed for evaluating the Padé approx-
imant of LogA, for examples, Horner’s method, Paterson-Slockmeyer method,

Rim(z) =
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Van Loan’s method, and methods based on continued fraction and partial frac-
tion expansions [8], [9].

It is well known that Padé approximation works well when the norm ||I — Al
is closer to zero [14], [19]. This can be ensured by using scaling strategies to
bring the matrix close to the identity, computes a Padé approximant of the
scaled matrix, and then scales back.

6.2. Algebraic approach

In this subsection we present a technique to compute LogA that is different
in nature from that developed in Section 6.1. This technique is based on the
analytic properties of Logz and is valid for any A with 0(A) C Dy . In fact we
show that LogA can be realized as the limit of a sequence of matrices {Ar},
where each A, is an algebraic function of A. Namely

LogA = lim A, (14)

7T—00
The above relation (14) suggests an iterative technique to compute LogA. We
start our discussion of this technique by considering the class of positive definite

matrices where the theory becomes mathematically rich. The following result is
essential to our development.

Theorem 11. Let a € R, be given and define the sequence {a,}, ar = r(a'/" —
1). Then
(¢) {ar} is monotonically decreasing and lim,_,o a, = Loga.

.\ jar—Logal la—1]
(”) |Logal < o

Proof. A direct application of the generalized mean value theorem yields the
relation,

Loga = r(a% (15)

1
-1)—.
<
where £ lies between a and 1. Now, it follows that
Loga = lim a, = lim r(a% -1).
r—00 T—00

To show that {a,} is monotonically decreasing, we need to show that for f(z) =
z(al/® — 1), we have f (z) < 0. We consider two cases @ < 1, and a > 1.
As for the case a < 1, we have a/® < 1 and f'(z) = al/* — 1 — ol/2L28% =

o
u [l — Logu] — 1, where u = a'/*. However, Logu = — 3 (1 — u)¥/k, and hence
k=1

1—Logu < 3. (1 —u)¥ = 1/u, so finally f (z) = u[l — Logu] — 1 < 0. As for
k=0

a > 1, we have

/ > I1 1 Loga)*
@) =2 [H_ (k—l)!} (:v’;qk!) <0

k=1
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and consequently f' (z) < 0. To prove the second assertion, we have
ar — Loga = (£/7 — 1) Loga.

If @ > 1, we have £/7 < a'/" and Loga > 0, then
ar — Loga a—1
Logag < 1+ al/m + a@2/7 .. 4 alr=D/7’ (16)
and so (a, — Loga)/Loga < (a—1)/r. Now {a,} being monotone decreasing and
we have |a, — Loga|/|Loga| < (a — 1)/r.
On the other hand if a < 1, we have Loga < 0 and £'/" > a!/7, so

ar — Loga

Loga

= €1/r_”1>a1/r_1

a—1
1+ al/r + a2/ 4.+ alr=1)/r’
and indeed (a, — Loga)/Loga > (a — 1)/r. Thus |a, — Logal/|Logal < (1 —
a)/r. [

The sequence {a,} can be shown to be linearly convergent, this can be seen
by estimating the limit limy.., '%%flliwhere er = ap — Loga..

The next theorem generalizes the previous result to the corresponding matrix
case. The theorem is valid for a wider class than those of positive definite
matrices.

(17)

Theorem 12. Let A € C™"™ be a nonsingular diagonalizable matriz with
o(A) C R%. Then, for A = Sdiag(A1, A, ..., n)S™Y, the principal logarithm
LogA is given by
= i r
LogA TEIEO r(A I.

A1)
T

Moreover, ||A, — LogAll < (S) maxj<i<n .maxi<i<n [Loghi.

Proof. A is diagonalizable, then there exists a nonsingular matrix S such that
A = Sdiag(Ay,...,A)S™1, A € RY 1 < i < n. Let AY/" denote the pricipal
rth root of A then r(AY" —I) = Sdiag(r(A; — 1),...,7(An — 1))S™!. Applying
Theorem 11 will complete the proof. O

For the case of a positive definite matrix A, Theorems 11 and 12 imply the
following result.

Theorem 13. Let A € C™*™ be q positive definite matriz A. LogA is realized
as the limit of monotone mutually commuting decreasing sequence {A,}, where
A =1(AY" —~ I). Furthermore for any unitarily invariant norm
I4- — LogA|| _ p(4)
LogAll  — r
The previous results can be extended to a general matrix A € C™*", Firstly
it is easy to check that for A € C, X € Dy, then r(A}/" — 1) converges to Log\.




On computation of matrix logarithm 119

Lemma 5. Let A € Dy, then Logh = lim, o r(AY/" —1).

The next theorem extends our results to any nonsingular matrix A € C™*"
with spectrum o(A) € Ds.

Theorem 14. Let A e C™*" o(A) C D,, then LogA = lim, .« r(AYT —1).

Proof. Let A = SJS7! = § diag(Jm, (M), .., Jm,(Ap)) S~' be the Jordan
canonical form of A, then
r(AVT — 1) = 8 diag(r(J3[r (M) = Imy)s- - (In (Ap) = Im,)) ST
(18)
where I, is an mg-by-my identity matrix. Now for the Jordan block Ji,, (Ak),
the matrix r(Jr" (M) — I, ) becomes

i Pl (_;_._1)5;:'_2 (=D (2 fmm2)af T ]
-1 N {m?)
1-tmp-2)
0 A B e
0 0 0
177‘
L 0 0 0 T()\k -1 |

by taking the limit as r — oo, we get lim, o T(J}n/,: (Ae)—Im,) = Log(Jm, (Ak)).
Then from (18) we conclude that

lim r(AV7 = 1) = S diag(Log(Jm; (M), .- , Log(Jm, (Ap))) $7*
= § LogJ 87! = LogA. O

One shortcome of this iterative technique {from the computational point of
view) is that the convergence is slow. There are well known techniques for the
remedy of this shortcome [?]. We will not pursue this point here any further.
Another shortcoming of this algorithm is the fact that the formula A, = r(AY/"—

I suffers cancellation for large r. One way for overcoming this problem is by
using the fact that

QT(AI/T -1 = Qr(Al/Z""'H _ I)(Al/y“ +1),
that is, Apy; = 24,(AY2™ 4 -1,
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