AN EXTREMAL PROBLEM ON POTENTIALLY $K_{r,r}$-ke-GRAPHIC SEQUENCES

  • Chen, Gang (Department of Mathematics, Ningxia University) ;
  • Yin, Jian-Hua (Department of Mathematics, College of Information Science and Technology, Hainan University)
  • 발행 : 2009.01.31

초록

For $1{\leq}k{\leq}r$, let ${\sigma}$($K_{r,r}$ - ke, n) be the smallest even integer such that every n-term graphic sequence ${\pi}$ = ($d_1$, $d_2$, ..., $d_n$) with term sum ${\sigma}({\pi})$ = $d_1$ + $d_2$ + ${\cdots}$ + $d_n\;{\geq}\;{\sigma}$($K_{r,r}$ - ke, n) has a realization G containing $K_{r,r}$ - ke as a subgraph, where $K_{r,r}$ - ke is the graph obtained from the $r\;{\times}\;r$ complete bipartite graph $K_{r,r}$ by deleting k edges which form a matching. In this paper, we determine ${\sigma}$($K_{r,r}$ - ke, n) for even $r\;({\geq}4)$ and $n{\geq}7r^2+{\frac{1}{2}}r-22$ and for odd r (${\geq}5$) and $n{\geq}7r^2+9r-26$.

키워드

참고문헌

  1. C. Berge,Graphs and Hypergraphs, North-Holland Publishing Co, Amsterdam, 1973.
  2. P. Erd0os, M.S. Jacobson, J. Lehel, Graphs realizing the same degree sequences and their respective clique numbers, in Graph Theory, Combinatorics & Applications, Alavi et al. eds., John Wiley & Sons, New York, Vol.1 (1991),439-449.
  3. R.J. Gould, M.S. Jacobson, J. Lehel, Potentially G-graphical degree sequences, in Combi-natorics, Graph Theory and Algorithms, Alavi et al. eds., New Issues Press, Kalamazoo Michigan, Vol.1 (1999),451-460.
  4. D.J. Kleitman, D.L. Wang, Algorithm for constructing graphs and digraphs with given valences and factors, Discrete Math. 6(1973),79-88. https://doi.org/10.1016/0012-365X(73)90037-X
  5. J.S. Li, Z.X. Song, An extremal problem on the potentially $P_k$-graphic sequences, Discrete Math. 212 (2000), 223-231. https://doi.org/10.1016/S0012-365X(99)00289-7
  6. J.S. Li, Z.X. Song, The smallest degree sum that yields potentially $P_k$-graphic sequences, J. Graph Theory 29(1998), 63-72. https://doi.org/10.1002/(SICI)1097-0118(199810)29:2<63::AID-JGT2>3.0.CO;2-A
  7. J.S. Li, Z.X. Song, The Erdos-Jacobson-Lehel conjecture on potentially $P_k$-graphic se-quences is true, Science in China, Ser.A 41(1998),510-520. https://doi.org/10.1007/BF02879940
  8. J.H. Yin, J.S. Li, An extremal problem on potentially $K_r,_s$-graphic sequences, Discrete Math. 260(2003), 295-305. https://doi.org/10.1016/S0012-365X(02)00765-3
  9. J.H. Yin, J.S. Li, The smallest degree sum that yields potentially $K_r,_r$-graphic sequences, Science in China, Ser.A 45(2002), 694-705.
  10. J.H. Yin, J.S. Li, G.L. Chen, The smallest degree sum that yields potentially $K_2,_s$-graphic sequences, Ars Combinatoria 74(2005), 213-222.
  11. J.H. Yin, J.S. Li, G.L. Chen, A variation of a classical Turan-type extremal problem, European J. Combinatorics 25(2004), 989-1002. https://doi.org/10.1016/j.ejc.2003.12.011