참고문헌
- C. Berge,Graphs and Hypergraphs, North-Holland Publishing Co, Amsterdam, 1973.
- P. Erd0os, M.S. Jacobson, J. Lehel, Graphs realizing the same degree sequences and their respective clique numbers, in Graph Theory, Combinatorics & Applications, Alavi et al. eds., John Wiley & Sons, New York, Vol.1 (1991),439-449.
- R.J. Gould, M.S. Jacobson, J. Lehel, Potentially G-graphical degree sequences, in Combi-natorics, Graph Theory and Algorithms, Alavi et al. eds., New Issues Press, Kalamazoo Michigan, Vol.1 (1999),451-460.
- D.J. Kleitman, D.L. Wang, Algorithm for constructing graphs and digraphs with given valences and factors, Discrete Math. 6(1973),79-88. https://doi.org/10.1016/0012-365X(73)90037-X
-
J.S. Li, Z.X. Song, An extremal problem on the potentially
$P_k$ -graphic sequences, Discrete Math. 212 (2000), 223-231. https://doi.org/10.1016/S0012-365X(99)00289-7 -
J.S. Li, Z.X. Song, The smallest degree sum that yields potentially
$P_k$ -graphic sequences, J. Graph Theory 29(1998), 63-72. https://doi.org/10.1002/(SICI)1097-0118(199810)29:2<63::AID-JGT2>3.0.CO;2-A -
J.S. Li, Z.X. Song, The Erdos-Jacobson-Lehel conjecture on potentially
$P_k$ -graphic se-quences is true, Science in China, Ser.A 41(1998),510-520. https://doi.org/10.1007/BF02879940 -
J.H. Yin, J.S. Li, An extremal problem on potentially
$K_r,_s$ -graphic sequences, Discrete Math. 260(2003), 295-305. https://doi.org/10.1016/S0012-365X(02)00765-3 -
J.H. Yin, J.S. Li, The smallest degree sum that yields potentially
$K_r,_r$ -graphic sequences, Science in China, Ser.A 45(2002), 694-705. -
J.H. Yin, J.S. Li, G.L. Chen, The smallest degree sum that yields potentially
$K_2,_s$ -graphic sequences, Ars Combinatoria 74(2005), 213-222. - J.H. Yin, J.S. Li, G.L. Chen, A variation of a classical Turan-type extremal problem, European J. Combinatorics 25(2004), 989-1002. https://doi.org/10.1016/j.ejc.2003.12.011