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ONE NEW TYPE OF INTERLEAVED ITERATIVE
ALGORITHM FOR H-MATRICES

QING TUO* AND JIANZHOU LIU

ABSTRACT. In the theory and the applications of Numerical Linear Al-
gebra, the class of H-matrices is very important. In recent years, many
appeared works have proposed iterative criterion for H-matrices. In this
paper, we provide a new type of interleaved iterative algorithm, which is
always convergent in finite steps for H-matrices and needs fewer iterations
than those proposed in the related works, and a corresponding algorithm
for general matrix, which eliminates the redundant computations when the
given matrix is not an H-matrix. Finally, several numerical examples are
presented to show the effectiveness of the proposed algorithms.
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1. Introduction

H-matrices play a vital role in both the theory and the applications of Nu-
merical Linear Algebra. Many appeared works have proposed various criteri-
ons(algorithms) that identify whether a matrix to be solved is an H-matrix or
not =91, At first, we give notations and definitions as follows:

In this paper, C"*"™(R™*") will be used to denote the set of all n x n com-
plex(real) matrices. N={1,2,...,n}. Let A = (a;;) € C"*", and

Rt(A) = Zj#é laijf , 1 E N, NO(A) = {Z % iaii( = RZ(A) , i E N},

Nl(A> = {2* |ais} > R;(4),i € N},NQ(A) ={ij0< lay| < Ri(A),i € N}

If |ai| > Ri(A),Vi € N, then A is called a strictly diagonally dominant
matrix. And if there exists a positive diagonal matrix D such that AL is strictly
diagonally dominant, then A is called a generalized diagonally dominant matrix
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(GDDM ), we denote this by A € D. It is well known that A is a GDDM if and
only if A is a nonsingular H-matrix.
Matrix A is called a reducible matrix, if there exists a subset K: ¢ # K C N,
satisfies
a;;j =0, foranyi € K, j € N\K.
If A is not a reducible matrix, we call A is an irreducible matrix.

Definition 1. ‘We define the comparison matrix of A, u(A4) = (ay;), by

o iai'i[7 1= .7 ’

i = { —laizl, i#7.

If the eigenvalues of u(A4) have positive real parts, we call u(A) an M-matrix.
We say that A is an H-matrix if and only if (A) is an M-matrix.

It is obvious that, as defined above, every H-matrix is nonsingular.

Definition 2. Let A be an irreducible matrix, if for alli € N,
laiil > Ri(A), (1)

and there exists at least one strict inequality in (1), then A is called an irreducible
diagonally dominant matrix.

Lemma 1[10]. Let A is an irreducible matriz. If for alli € N,
laii| > Ri(A), @
and there exists at least one strict inequality in (2), then A is an H-matriz.

We know that A is an H-matrix if No(A)|J N2(4) = 0, and A is not an H-
matrix if N1(A) = 0. So in this paper, set No(A4)|JNo(A4) # 0, and Ny (4) # 0.

Because it is difficult to find a proper D for an H-matrix such that AD is
strictly diagonally dominant, an efficient iterative algorithm is required. Re-
cently, Li et al. in [2] have proposed a non-parameter iterative method for
generalized diagonally dominant matrices, and T. Kohno et al. in [3] gave an
algorithmic procedure to eliminate redundant computations of iterations when
A is not an H-matrix. Liu and He in [1] provide two improved algorithm by
means of interleaved iteration, which need fewer iterations than that of Li et
al.in [1] and T. Kohno et al. in [3], and other methods show in [4-9].

In this paper, we provide an interleaved iterative algorithms for H-matrices,
which is always convergent in finite steps and needs fewer iterations than those
in [1-3], and then give a corresponding algorithm for general matrix to eliminate
redundant iterations when the given matrix is not an H-matrix. Finally, sev-
eral numerical examples are presented to show the effectiveness of the proposed
algorithms.

2. The algorithms

First, set A = (a;;) € C™*", satisfying a;; # 0, for all i € N, we will use the
notations as follows:
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v = Z |aij|, and if No(A) = {i} or No(A) = ¢, we set ; = 0,
JENo(A),j#i
ai= Y layl, and if Ni(A) = {i} or Ni(4) = ¢, we set a; = 0,

JENL(A),j#i

ﬂi = Z |az‘j|, and if N2(A) = {7,} or N2(A) = d)’ we set ﬁi = 0’
JEN2(A),j#i

rg = Imax <M> , Pi=~yi+roa;+ B, Vie Ni(A),
iEN1(A) |an'| — O

h= max Y+ B 2
ieMm(A) | P — Z |ait||—&i—|

tEN1(A),t#1

Algorithm A(L. Li et al. in [2]). Suppose A = (a;;) € C™*", ay # 0, is an
irreducible matrix. Let Ni(A) # ¢.
(A) N1(A) =0, Na(A) =0. Fori=1,2,...,n,do {

(A1) Compute Ri(A) =3, |ail,

(A2) If |ayi| > Ri(A4), then { Ny(4) =1, d;=5L
aj; = aj; * d; j=12,...,n}

else if |a;;| < R;(A), then Ny(A) = 1,
else, }
(B) If N1(A4) = 0, then print ‘4 is not a GDDM’, go to (C).
else if N3(A) = 0, then print ‘A is a GDDM’, go to (C).
else return to (A).
(C) End.

Algorithm A’(Liu and He in [1]). Input: a given irreducible matrix A = (a4;) €
C’n)(’n,‘
Output: D= DMDP)...Dim) € Dy if A is an H-matrix.
1. if M(A) = ¢ or ay; = 0 for some i € N, ‘A is not an H-matrix’, stop;
otherwise,
2. set m=1,40 =4, DO =],
3. compute AM = Alm-1p(m-1) _ (az(;”)),
4. if Ny(A(™) = ¢, A is not an H-matrix’, stop; if N; (A™)J No(A(™) = N,
‘Aisan

H-matrix’, stop; otherwise,
5. compute agm), ,Bi(m), %(m), i €N,
6. set o = max %,

1EN; (A0m) [z |-

7. set d = (d;), where
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BAT) it i Ny(A™
If m is an odd number,then d; = { leii”! ’ i )
1, if i € No(AM™)(J No(AM™).

ro, if i€ Ni(A™),
1, if i€ No(A™)|No(Am).

8. set D™ = diag(d),m =m+ 1, go to step 3.

If m is an even number, then d; = {

Next, we provide a new improved interleaved iteration algorithm.

Algorithm I. Input: a given irreducible matrix A = (a;;) € C™*"™.

Output: D= DWD®P...Dim) ¢ D, if A is an H-matrix.

1. if My(A) = ¢ or a;; = O for some ¢ € N, ‘4 is not an H-matrix’, stop;
otherwise,

2.set m=1,A0 =4, DO =],

3. compute AM = A(m-1)p(m-1) = (ag")),

4. if N(A™) = ¢, ‘A is not an H-matrix’, stop; if Ni(A™)J No(A(™) = N,
‘Ais an

H-matrix’, stop; otherwise,
(m) p(m) _(m)

5. compute o; ', B, v, ', Vi€EN,
6. compute r((,m), Pi(m) , b i e Ny(AM),
ROm) plm)
7. set r; = syl
fagi |
8.

set d = (d;) ,“.Where

%i{‘,%)), if i € Ny(AM™),

If m is an odd number, then d; =
1, if i € No(AU™)[J Na(A™).

re, if i€ Ny(A™),

mi ber, then d; =
m 18 an even numoer en i {1, i_'f ieNo(A(m))UNZ(A(m))~

9. set D™ = diag(d),m =m + 1, go to step 3.

Remark 1. In Algorithm I, 4 is an irreducible matrix, so for all i € Ny (A™),

we have om)
plm
0<ri™ <1, 0< ——<1

<t
and
my o K™+ B
02 Ty
lag | — o

(m)

P

AP 2o P B = P, 2 B
{11
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and
%(m) + ﬂi(m) B Pi(m) _ 7d((JM) a(m)
™ (m)
N S T T S e oy
tENT (A, i teNL (AT 11 aiy”
pm
Pz(m) - Z |a'1(,t'm) |a(m)|
< BEN (AG™) 1 -1
Py
P’L(m) - Z I (m)‘ |a(m)|
teN1 (Alm)) ti
then
0<him <1,
(m) p(m) (m)
o< MR =7 < <™ =71y <1, Vie Ny (A™).

la (m)l la (m)l

Therefore we have that this algorithm needs fewer number of iterations than
Algorithm A and A’. The theoretical analysis of Algorithm I as a characterization
of H-matrices is presented by the following theorem:

Theorem 1. A = (a;;) € C™" is an irreducible H-matriz if and only if Algo-
rithm I stops after a finite number of iterations by producing a strictly diagonally
dominant matriz.

Proof. Sufficiency: Suppose that Algorithm I stops after m iterations. That
means, we have obtained a strictly diagonally dominant matrix A(™ = A(D()
D®...pm=1) — AD where D = DODM...Dim=1) ig a positive diagonal ma-
trix. Thus, A4 is an irreducible H-matrix.

Necessity: Let A be an irreducible H-matrix. For notational convenience, we
assume A is a nonnegative matrix. By using way of contradiction, suppose that
Algorithm I doesn’t stop after a finite number of iterations. From Algorithm I,
we have AM) = AO DM D) ... pm=1) = AD where D = D)D) . .. plm-1)
is a positive diagonal matrix, then it is obvious that

A=AW>...>AM>. . .>0,

The infinite matrix sequence {A(m)} is bounded and monotone decreasing, then
we have

lim A™ =B>0,

m—00
where B= AF, F= DO D) ... pm) ... ig a positive diagonal matrix.
Next, we want to prove

lim Ni(A™) = Ni(B) =

m-—00
By using way of contradiction again, we assume lim Nj(A(™) # ¢, then 1 —
m—00
r; >0, Vie Ny (A(m)) and there exist some ¢ and £, €2 such that

agn)—Ri(A(m))>€1, al(-:n)(l—’l"i)>82, m=12,....
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We set g9 = min{ ey, €2 }.
When m is an odd number, from Algorithm I, we have

R; ( A(m))
+1
= oM (ag") ~ Ri(4(™))
< ,E,:n ) —&p.
When m is an even number, from Algorithm I, we have
0<a™ = My,
(3
< a,gn) )
< ai™ .
Note that ey is positive and therefore
a§?)= (1) ( )-1—5 > (m)+(m—1)so

©

Let m — oo. Then a;;” — 00, we obtain a contradiction. Thus,

Jim Ni(AM™) = Ny(B) =

That means B is not an H-matrix. On the other hand there exists a positive
diagonal matrix E such that AE = B(F~1E) is strictly diagonally dominant. We
know that F~1E is still a positive diagonal matrix, so B is an H-matrix. Then
we obtain another contradiction, completing the proof of this theorem. O

The drawback of Algorithms I is that when A is not an H-matrix, it requires
a large number of iterations. Kohno et al. in [3] proposed a new algorithmic
procedure to conquer this drawback, and Liu et al. in [1] have improved it.
Algorithm B(T. Kohno et al. in [3]). Input: a given matrix A = (a;;) € C™*"™.
Output: D= DMDA...DM) ¢ D, if A is an H-matrix.
1. if Ny(A) = ¢ or ay; == 0 forsome ¢ € N, ‘A is not an H-matrix’, stop;otherwise,
2.5t m=1,40 =4 DO =,
3. compute A(™ = A(m—1)pim-1) — (az(;n) )s
4. compute

(m)_ Lgtla ‘””1

5. if dz(m) < 2 for all 4, ‘A is an H-matrix’, stop;
if dgm) > 2 for all 4, ‘4 is not an H-matrix’, stop; otherwise,
6. set DI™ = diag(dz(-m)), m=m+1, go to step 3.

Algorithm B’ (Liu and He in [1]). Input: a given irreducible matrix 4 =
(aij) € C™*™,
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Output: D= DVDP ... DM € D, if Ais an H-matrix.
1. if Ni(A) = ¢ or a;; = O for some i € N, ‘A is not an H-matrix’, stop; if
NQ(A) = 9, ‘A

is an H-matrix’, stop; otherwise,
2.setm=1, A® =4 DO =],
3. compute A(™ = Alm-1)p(m=1) — (agn)) ,
4. compute agm), ﬂi(m), %.(m), i € N,

. gl

5. ] min m s
1€No(Am))UN; (Am)) la " |—a; Y
6. if |a™ | < r ™ + 8™ 4 r 4™ for all i € No(A™), ‘A is not an H-
matrix’, stop;

otherwise,

set r1 =

() 4 ()
ieNl?(aA}fm)) la{™ |—al™
8. if No(A™) N, (A™) = N or |a{™ | > raal™ + 8™ 4™ for all i €
No(A™) Y
No(A™) ‘A is an H-matrix’, stop; otherwise,
9. set d = (d;), where

7.8et 19 =

M)_’ ific NI(A(m))’
If m is an odd number, then d; = { lo”]

1, if i€ No(A™) Y No(AM™),

rq, 1if 7€ Nl(A(m)),

If m is an even number, then d; = {1’ if ic NO(A(m))UNg(A(m)).

10. set D™ = diag(d),m = m + 1, go to step 3.

Next, we give a new improved algorithm for general irreducible matrices on
the basis of Algorithm B and B’.

Algorithm II. Input: a given irreducible matrix A = (a;;) € C™*"™.

Output: D= DD ... D™ ¢ D, if A is an H-matrix.

1. if Ni(A) = ¢ or ay; = 0 for some 7 € N, ‘A is not an H-matrix’, stop; if
Ny(A) = ¢, ‘A

is an H-matrix’, stop; otherwise,

2.set m=1, A0 =4, DO =],

3. compute A™) = A(m-1pim=1) — (agn)) ,

4. compute agm), ﬁi(m), %(m), i€ N,

5. compute r(()m), Pi(m), R Vi e Nl(A(m)),

6. set ] = min Al ) '
1ENG (A )UN, (A(m)) lal™ = ) lal™ ||_P%W(_%§m>

teNg (A(M)y et et
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7. if [a(m)i < rha{™ 4 g™ 4 rlyfm} for all i € Na(A(™), ‘A is not an H-
matrix’, stop;

otherwise,
Alm) pm)
8. set r; = Bl

(m) p(m}
9. if No(A(m))UNl(A(m)) = N or {a(m)i > > | ('m) |h P
tEN1(AL™) 1544

ﬁi(m) +’y§m) for alli € No(A™)[JNa(Al™), ‘Ais an H-matrix’, stop; othemnse,

10. set d = (d,) , where
R | if je Ny(A™),
If m is an odd number, then d; = lagi |
1, if i€ No(Am) | Ny(A™).
ri, if i€ Nj(AM),
1, if i€ No(A™)No(AM™).

11. set D™ = diag(d),m =m +1, go to step 3.

If m is an even number, then d; = {

We prove the following theorem for Algorithm I

Theorem 2. Let A = (a;;) € C™ ™ be an irreducible matriz, if Algorithm I
stops after k iterations,
(1) When [a(k} | < r‘iagk) + ﬂ(k) +7 'y(k) where 7] =

)
22 , then A is not an H-matriz;
ieNo(A(k))uNl(A(k)) |a§f)]— Z (k)l f ,y(k
teN;(A(R)), e4
(2) When No(A®))J N1(A®) = N or| a““) 1> Y rfa® 404

teEN1(AR)) 1544
(k)

%_(k) for alli € No(A®)) Y No (AR, wherer; = h; )f,' , then A is an H-matriz.

Proof. For Vi € Ni(A"™), when m is an odd number, from Algorithm I, as

Eifl-(r)l < 1, we have
lag”|

| (m+1)¥ &(A(m+1))
— Jam Rz(x(‘l:)”)) e R, (1(4;) ) _ g _
| I 1IEN1(A(m)) | |
> Ri(A™) — o™ — g™ =™ =0
When m is an even number, from Algorithm I, we have
la (m+1)! Ri(A(m'H))

— Tzl“(m)l Z n[a(m)| ﬂ(m) (m)
tEN (AU, b4
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plm) Pi(m) _ Z l (m) | ( )) ﬂ(m) (m)
tENL(AC™),t4d lag” |
m)
B ™ plm) o | P
(m) (m) P( ) i Z (m)
Pi - Z | || (m)‘ tEN (AU 44 | Ayt |

tEN1 (A(m)) i
=B =A™ = (B ™) = BT — 4™ = 0.

Thus (No(AM)UM(AD)) C (No(4A®)UM(A®)) C -+ € (Mo(4®)U
Nl(A(k))). This means that multiplication with D(™~1 from the right doesn’t
change the diagonally dominant rows of A(™~1), Then,
(1) First we denote No(A) = {i € Ni(A) | B = 0}, & = 3, 5, 4 1aig], and if
No(A) = {i} or No(A) = ¢, we set & =0.

If Ny(A®) = ¢, then 7| = 1. Furthermore |a )< ﬁ(k) +’y(k) = R;(A®)

for all 4 € Np(A®)), it is obvious that A is not an H-matrix, then we always
assume Ny (A®)) # ¢ in the following.

When Ni(A®)) # ¢ and NO(A(k)) é, then r} > 0. We construct a positive
diagonal matrix D = dlag{d |d = 1), i € No(A®)J Ny (AK)); di=1,i¢
No(A®N) 1 and write A=A®D = (@sj).

(k)
For i € No(A®)) | N (A®), as%)—‘ <1,i€ Ny(A®), we have

[Gui — & — B 5

_ r1|a““)| a®) _ g _ g0
k k
= ri(laf| = of =)~ 5"
(k)
8; (k) (k) (k) (k)
< : (lagi’| = o = %) = B
k k P(k) k ) 1
B D S L
teN1 (AU t+4
k
g
®) )| 27 o 1%
|a’z'1' | — > | | <

I i

tENL (AR 144 fa,

_ Z | a

teN1 (AR, t#4 | |

— 4y — gk — gty _ gF) — g

For i € Na(A®), we have

~ ~ = k k k
@l =&~ 57 = laff’| —r{al? - 5" —rin" <0
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So A has no diagonally dominant row. From Algorithm I, we obtain A=
A®D = ADWD®@ ... pk-) D where DVD@ ... D=1 D is a positive diagonal
matrix, thus A is not an H-matrix.

 When N;(A%)) £ ¢ and No(A®) £ ¢, then 1} = 0. Furthermore,

’a(k) |<r a:(k) +,3(k) +7 {k) 131(’0)’ Vie N2(A(k)),
thus for any positive number d, we have
d| (k)i < d{)’(k) Vie Nz(A(k)) k
Notice that 8 # 0, i € (No(A®) Um (A®))\ No(A®), we construct a posi-
tive diagonal matrix D = diag{d; }dz =c, i € (No(A®)[J Ny (A®))\Np(A®));
di=1,i€ No(A®);d; = d, i € Ny(A®)}, where
|a (k)l (k)
c= max 21,
’LGNQ(A(‘“)) U Nl(A(k)) a(k) + (k) 6(’6)
k k k k k
i ox cllogs| - ”—’7§’+£§))~£§)>0
1€ (No(A®) | N1 (AR Rio(A09) *

and write A = A® D = (a,;).

For i € No(A®), we ha,lle

ra'\ni & ﬂ

= |a(k)| C(a(k)+ (k) _ k)) §(k) dﬁi(k)
- ]a(k)l §,§k) c(a(k)+ (k) g(’ﬂ)
(k) (k)
k k Q| — k k k
< a®) g _ o] (@ 1 4B _®y _ g,

gk}+ z{’ﬁ) §(k)
For i € (No(A®) [ N1 (4®)) \No(A®)), we have
@il —a-5-3 |
= ela®] e (0® 4+ 4® — ¥y ) _ 450
c(la (k)l (k) (k) +§(k)) £(k)
(k){ ‘(k) (k) f(k))

ﬂ(k)

For i € Na(A)), as c(a(k) + 'y(k} ék)) +»§£k) > agk) +7§’“) > 0, and
d| a(k)} < dﬂ(k), we have

i) — Q& ~ ﬂ ¥ =dla

So. A has no diagonally dominant row. From Algorithm I, we obtain A=
A®D = ADWDA ... DE-D D where DVDP ... DE-DD is a positive diagonal
matrix, thus A is not an H-matrix.

IA

_c(|ag

& e —

B _ ¢ (o) 44 _ g0y _ ) _ g L g
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(2) We construct a positive diagonal matrix D = diag{d;|d; = r, 1 €
Nl(A(’“)); di=1i¢€ NO(A(’“)) UNz(A(k))}, and write 4’ = A®D = (a;j).
For i € Ni(A®), we have
gl —o/ =0 =7 = 1P| - Y relal) |- AR — AP
teEN1(AKR)) 44

k k
= p® Pi(k)_ Z | (k)l —ﬁz() ’Yz()
teN1 (A 144 tt l
k (k k k
> () - 0 AP =0
For i € No(A®)) UNz(A(k)) we have
laj;| = =3 =+ =la (k)| Z T4 a(k) | — ,Bi(k) - 'yz-(k) > 0.
teEN1(AKR)) t#£i
So A’ is an irreducibly diagonally dominant matrix. From Algorithm I, we
obtain A’ = A®XD = ADVD®@ ... pE-DD, where DVDP ... DE-DD is a
positive diagonal matrix, thus A is an H-matrix. O
3. Examples
We give the following examples to show the effectiveness of the proposed
algorithms:

Example 1. Let

3 1 1 0 2
2 4 11 1
A= 05 05 3 1 05 |,
05 025 3 4 O
1 0 4 0 20

we have that Algorithm I needs only one iteration for identifying A is an H-
matrix, while both Algorithm A and Algorithm A’ require three iterations.

Example 2. Let

1 0.1 005 O

0.3 1 0 0.05

0 005 1 105 |’
0.06 0.1 105 1

we have that Algorithm Il needs only one iteration for identifying A is not an
H-matrix, while Algorithm B requires eleven iterations.
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