초록
피부색 정보는 비전 기반 시스템에서 인체 인식에 널리 쓰이는 중요한 정보이다. 그러나 기존의 픽셀 단위의 피부색 분할 방법은 피부색 영역 내부와 외부에 발생하는 오분할로 인해 여러 가지 피부색 관련 시스템의 인식률을 저해시키는 요인이 된다. 본 논문에서는 양자화 영역 정보로부터 프레임 간에 근접한 유사 피부색의 영역별 분할을 통한 피부색 분할 방법을 제안한다. 제안하는 방법은 피부색 영역분할을 위해 JSEG 알고리즘을 통해 영상의 칼라를 양자화하여 영역을 분할한다. 분할된 영역으로부터 근접한 유사 피부 영역의 후보를 결정하고, 각 영역의 히스토그램 비교를 통해 피부색 영역을 결정한다. 이렇게 결정된 영역으로부터 피부색 표본을 추출하여 다음 프레임을 위한 피부색 모델을 갱신한다. 성능 평가를 위해 ECHO 데이타베이스와 조명이 변화하는 환경에서 실제 촬영한 영상을 이용하여 기존 연구의 분류 방법 비교 실험을 실시하였고, 기존보다 향상된 영역 분할 및 조명 적응 성능을 보였다.
This paper proposes a skin segmentation method based on region histograms of the color quantization map. First, we make a quantization map of the image using the JSEG algorithm and detect the skin pixel. For the skin region detection, the similar neighboring regions are set by its similarity of the size and location between the previous frame and the present frame from the each region of the color quantization map. Then we compare the similarity of histogram between the color distributions of each quantized region and the skin color model using the histogram distance. We select the skin region by the threshold value calculated automatically. The skin model is updated by the skin color information from the selected result. The proposed algorithm was compared with previous algorithms on the ECHO database and the continuous images captured under time varying illumination for adaptation test. Our approach shows better performance than previous approaches on skin color segmentation and adaptation to varying illumination.