DOI QR코드

DOI QR Code

Functional Mechanism of Calmodulin for Cellular Responses in Plants

식물의 세포반응에 대한 칼모듈린의 functional 작용기작 연구

  • 조은경 (신라대학교 바이오식품소재학과) ;
  • 최영주 (신라대학교 의생명과학대학 식품영양학과)
  • Published : 2009.01.30

Abstract

Calcium ($Ca^{2+}$) plays pivotal roles as an intracellular second messenger in response to a variety of stimuli, including light, abiotic. and biotic stresses and hormones. $Ca^{2+}$ sensor is $Ca^{2+}$-binding protein known to function in transducing signals by activating specific targets and pathways. Among $Ca^{2+}$-binding proteins, calmodulin (CaM) has been well reported to regulate the activity of down-stream target proteins in plants and animals. Especially plants possess multiple CaM genes and many CaM target proteins, including unique protein kinases and transcription factors. Thus, plants are possible to perceive different signals from their surroundings and adapt to the changing environment. However, the function of most of CaM or CaM-related proteins have been remained uncharacterized and unknown. Hence, a better understanding of the function of these proteins will help in deciphering their roles in plant growth, development and response to environmental stimuli. This review focuses on $Ca^{2+}$-CaM messenger system, CaM-associated proteins and their role in responses to external stimuli of both abiotic and biotic stresses in plants.

$Ca^{2+}$은 다양한 자극과 빛, biotic, abiotic 스트레스, 호르몬 등의 반응에 대한 세포내 2차 신호전달물질로써 중요한 역할을 한다. $Ca^{2+}$의 반응자들은 특정 물질과 경로를 활성화함으로써 신호전달 기능을 한다고 알려져 있는 $Ca^{2+}$ 결합 단백질들이다. 이들 단백질 중, calmidulin (CaM)은 식물과 동물의 특정 단백질의 활성을 조절하는 것으로 잘 알려져 왔다. 특히, 식물은 다양한 CaM 유전자와 특징적인 protein kinase와 전사인자를 포함한 많은 종류의 CaM 관련 단백질들을 가지고 있다. 이로 인해서 식물은 주변의 여러 가지 신호등을 인지할 수 있을 뿐만 아니라 변화된 환경에 적응할 수 있는 것이다. 하지만, 대부분의 CaM이나 이들과 관련된 단백질들의 기능은 최근 활발히 연구되고 있지만 아직 많은 작용 기작이 연구의 대상이 되고 있다. 따라서 CaM의 기능을 좀 더 이해한다면 식물의 환경적 자극에 대한 반응과 식물의 성장과 발달에 있어서 CaM의 역할을 규명하는데 도움을 줄 수 있을 것으로 기대된다. 본 논문은 $Ca^{2+}$-CaM의 신호전달 시스템과, CaM과 관련된 단백질들, 그리고 식물의 biotic, abiotic 스트레스에 대한 외부 자극의 반응에 있어서 CaM의 작용에 대해 기술하였다.

Keywords

References

  1. Arazi, T., R. Sunkar, B. Kaplan and H. Fromm. 1999. A tobacco plasma membrane calmodulin-binding transporter confers $Ni^{2+}$ tolerance and $Pb^{2+}$ hypersensitivity in transgenic plants. Plant J. 20, 171-182 https://doi.org/10.1046/j.1365-313x.1999.00588.x
  2. Arazi, T., B. Kaplan and H. Fromm. 2000. A high affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains. Plant Mol. Biol. 42, 591-601 https://doi.org/10.1023/A:1006345302589
  3. Arazi, T., B. Kaplan, R. Sunkar, D. Dolev and H. Fromm. 2000. Cyclic nucleotide- and calcium/calmodulin-regulated channels in plants: targets for manipulating heavy metal tolerance, and possible physiological roles. Biochem. Soc. Transact. 28, 471-475 https://doi.org/10.1042/0300-5127:0280471
  4. Aurisano, N., A. Bertani and R. Reggiani. 1995. Involvement of calcium and calmodulin in protein and amino acids metabolism in rice roots under anoxia. Plant Cell Physiol. 36, 1525-1529
  5. Benjamins, R., A. Quint, D. Weijers, P. J. J. Hooykaas and R. Offringa. 2001. The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128, 4057-4067
  6. Benjamins, R., C. S. G. Ampudia, P. J. J. Hooykaas and R. Offringa. 2003. PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol. 132, 1623-1630 https://doi.org/10.1104/pp.103.019943
  7. Blancaflor, E. B. and P. H. Masson. 2003. Plant gravitropism: unraveling the ups and downs of a complex process. Plant Physiol. 133, 1677-1690 https://doi.org/10.1104/pp.103.032169
  8. Bouch$\acute{e}$, N., A. Yellin, W. A. Snedden and H. Fromm. 2005. Plant-specific calmodulin-binding proteins. Ann. Rev. Plant Biol. 56, 435-466 https://doi.org/10.1146/annurev.arplant.56.032604.144224
  9. Braam, J. and R. W. Davis. 1990. Rain-, wind-, and touch-induced expression of calmodulin and calmodulinrelated genes in Arabidopsis. Cell 60, 357-364 https://doi.org/10.1016/0092-8674(90)90587-5
  10. Braam, J., M. L. Sistrunk, D. H. Polisensky, W. Xu, M. M. Purugganan, D. M. Antosiewicz, P. Campbell and K. A. Johnson. 1997. Plant responses to environmental stress: regulation and functions of the Arabidopsis TCH genes. Planta Suppl. 203, 35-41
  11. Chen, Y. L., R. F. Huang, Y. M. Xiao, P. Lu, J. Chen and X. C. Wang. 2004. Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and $H_{2}O_{2}$. Plant Physiol. 136, 4096-4103 https://doi.org/10.1104/pp.104.047837
  12. Cheng, S. H., M. R. Willmann, H. C. Chen and J. Sheen. 2002. Calcium signaling through protein kinases: the Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol. 129, 469-485 https://doi.org/10.1104/pp.005645
  13. Cho, M. J., P. L. Vaghy, R. Kondo, S. H. Lee, J. P. Davis, R. Rehl, W. D. Heo and J. D. Johnson. 1998. Reciprocal regulation of mammalian nitric oxide synthase and calcineurin by plant calmodulin isoforms. Biochem. 37, 15593-15597 https://doi.org/10.1021/bi981497g
  14. Chung, W. S., S. H. Lee, J. C. Kim, W. D. Heo, M. C. Kim, C. Y. Park, H. C. Park, C. O. Lim, W. B. Kim, J. F. Harper and M. J. Cho. 2000. Identification of a calmodulinregulated soybean $Ca^{2+}$-ATPase (SCA1) that is located in the plasma membrane. Plant Cell 12, 1393-1408 https://doi.org/10.2307/3871138
  15. Clough, S. J., K. A. Fengler, I. C. Yu, B. Lippok, J. R. K. Smith and A. F. Bent. 2000. The Arabidopsis dnd1 ‘defense, no death’ gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. USA 97, 9323-9328 https://doi.org/10.1073/pnas.150005697
  16. Chatterjee, A., D. M. Porterfield, P. S. Smith and S. J. Roux. 2000. Gravity-directed calcium current in germinating spores of Ceratopteris richardii. Planta 210, 607-610 https://doi.org/10.1007/s004250050050
  17. Dash, S., W. Niemaczura and H. M. Harrington. 1997. Characterization of the basic amphiphilic α-helix calmodulin-binding domain of a 61.5 kDa tobacco calmodulin-binding protein. Biochem. 36, 2025-2029 https://doi.org/10.1021/bi9621674
  18. Desikan, R. A. -H., S. Mackerness, J. T. Hancock and S. J. Neill. 2001. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127, 159-172 https://doi.org/10.1104/pp.127.1.159
  19. Digby, J. and R. D. Firn. 2002. Light modulation of the gravitropic set-point angle (GSA). J. Exp. Bot. 53, 377-381 https://doi.org/10.1093/jexbot/53.367.377
  20. Du, L. and B. W. Poovaiah. 2005. $Ca^{2+}$/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature 437, 741-745 https://doi.org/10.1038/nature03973
  21. Esmon, C., U. Pedmale and E. Liscum. 2005. Plant tropisms: providing the power of movement to a sessile organism. Int. J. Dev. Biol. 49, 665-674 https://doi.org/10.1387/ijdb.052028ce
  22. Goldstein, G. W. 1993. Evidence that lead acts as a calcium substitute in second messenger metabolism. Neurotoxicol. Teratol. 14, 97-101 https://doi.org/10.1016/0378-4274(96)03670-3
  23. Gong, M., A. H. van der Luit, M. R. Knight and A. J. Trewavas. 1998. Heat-shock induced changed in intracellular $Ca^{2+}$ level in tobacco seedlings in relation to thermotolerance. Plant Physiol. 116, 429-437 https://doi.org/10.1104/pp.116.1.429
  24. Hangarter, R. P. 1997. Gravity, light and plant form. Plant Cell Environ. 20, 796-800 https://doi.org/10.1046/j.1365-3040.1997.d01-124.x
  25. Harding, S. A., S. H. Oh and D. M. Roberts. 1997. Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO J. 16, 1137-1144 https://doi.org/10.1093/emboj/16.6.1137
  26. Harmon, A. C., M. Gribskov and J. F. Harper. 2000. CDPK's-a kinase for every $Ca^{2+}$ signal? Trends Plant Biol. 5, 154-159 https://doi.org/10.1016/S1360-1385(00)01577-6
  27. Harper, J. F., J. F. Huang and S. J. Lloyd. 1994. Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochem. 33, 7267-7277 https://doi.org/10.1021/bi00189a031
  28. Heo, W. D., S. H. Lee, M. C. Kim, J. C. Kim, W. S. Chung, H. J. Chun, K. J. Lee, C. Y. Park, H. C. Park, J. Y. Choi and M. J. Cho. 1999. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc. Natl. Acad. Sci. USA 96, 766-771 https://doi.org/10.1073/pnas.96.2.766
  29. Hsieh, H. L., C. J. Song and S. J. Roux. 2000. Regulation of a recombinant pea nuclear apyrase by CaM and casein kinase II. Biochim. Biophis. Acta. 1494, 248-255 https://doi.org/10.1016/S0167-4781(00)00245-1
  30. Hu, X., M. Jiang, J. Zhang, A. Zhang, F. Lin and M. Tan. 2007. Calcium-calmodulin is required for abscisic acid induced antioxidant defense and functions both upstream and downstream of $H_{2}O_{2}$ production in leaves of maize (Zea mays) plants. New Phytol. 173, 27-38 https://doi.org/10.1111/j.1469-8137.2006.01888.x
  31. Huang, J., L. Teyton and J. F. Harper. 1996. Activation of a $Ca^{2+}$-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain. Biochem. 35, 13222-13230 https://doi.org/10.1021/bi960498a
  32. Huang, J. W. and S. D. Cunningham. 1996. Lead phytoextraction: species variation in lead uptake and translocation. New Phytol. 134, 75-84 https://doi.org/10.1111/j.1469-8137.1996.tb01147.x
  33. Jakobek, J. L., J. A. Smith-Becker and P. B. Lindgren. 1999. A bean cDNA expressed during a hypersensitive reaction encodes a putative calcium-binding protein. Mol. Plant Microbe Interac. 12, 712-719 https://doi.org/10.1094/MPMI.1999.12.8.712
  34. Jones, D. L., S. Gilroy, P. B. Larsen, S. H. Howell and L. V. Kochian. 1998. Effect of aluminum on cytoplasmic $Ca^{2+}$ homeostasis in root hairs of Arabidopsis thaliana (L.). Planta 206, 378-387 https://doi.org/10.1007/s004250050413
  35. Kang, C. B., H. Ye, S. Dhe-Paganon and H. S. Yoon. 2008. FKBP family proteins: immunophilins with versatile biological functions. Neurosignals 16, 318-325 https://doi.org/10.1159/000123041
  36. Khan, M. M. K., S. Yang, Y. Iwasaki, Y. Fujisawa, H. Fukuda and S. Komatsu. 2005. A gibberellin-regulated protein phosphorylated by a putative $Ca^{2+}$-dependent protein kinase is G-protein mediated in rice root. Plant, Cell and Environ. 28, 679-687 https://doi.org/10.1111/j.1365-3040.2005.01321.x
  37. Kim, M. C., S. H. Lee, J. K. Kim, H. J. Chun, M. S. Choi, W. S. Chung, B. C. Moon, C. H. Kang, C. Y. Park, J. H. Yoo, Y. H. Kang, S. C. Koo, Y. D. Koo, J. C. Jung, S. T. Kim, P. Schulze-Lefert, S. Y. Lee and M. J. Cho. 2002. Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue. J. Biol. Chem. 277, 19304-19314 https://doi.org/10.1074/jbc.M108478200
  38. Kim, M. C., R. Panstruga, C. Elliott, J. Muller, A. Devoto, H. W. Yoon, H. C. Park, M. J. Cho and P. Schulze-Lefert. 2002. Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416, 447-451 https://doi.org/10.1038/416447a
  39. Keller, T., H. G. Damude, D. Werner, P. Doerner, R. A. Dixon and C. Lamb. 1998. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with $Ca^{2+}$ binding motifs. Plant Cell 10, 255-266
  40. Knight, M. R., A. K. Campbell, S. M. Smith and A. J. Trewavas. 1991. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352, 524-526 https://doi.org/10.1038/352524a0
  41. Kohler, C. and G. Neuhaus. 2000. Characterization of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana. FEBS Lett. 471, 133-136 https://doi.org/10.1016/S0014-5793(00)01383-1
  42. Kuriu, T., Y. Oosawa, Y. Watanabe and Y. Nakaoka. 1997. Defect of cold sensitive response in calmodulin mutants of Paramecium and the restoration by cyclic nucleotide. Cell Struc. Func. 22, 493-500 https://doi.org/10.1247/csf.22.493
  43. Kwak, J. M., I. C. Mori, Z. -M. Pei, N. Leonhardt, M. A. Torres, J. L. Dangl, R. E. Bloom, S. Bodde, J. D. G. Jonesand and J. I. Schroeder. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22, 2623-2633 https://doi.org/10.1093/emboj/cdg277
  44. Lee, S. H., J. C. Kim, M. S. Lee, W. D. Heo, H. Y. Seo, H. W. Yoon, J. C. Hong, S. Y. Lee, J. D. Bahk, I. Hwang and M. J. Cho. 1995a. Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. J. Biol. Chem. 270, 21806-21812 https://doi.org/10.1074/jbc.270.37.21806
  45. Lee, S. H., J. D. Johnson, M. P. Walsh, J. E. van Lierop, C. Sutherland, A. Xu, W. A. Snedden, D. Kosk-Kosicka, H. Fromm, N. Narayanan and M. J. Cho. 2000. Differential regulation of $Ca^{2+}$/calmodulin-dependent enzymes by plant calmodulin isoforms and free $Ca^{2+}$ concentration. Biochem. J. 350, 299-306 https://doi.org/10.1042/0264-6021:3500299
  46. Lee, J. Y., B. C. Yoo and A. C. Harmon. 1998. Kinetic and calcium-binding properties of three calcium-dependent protein kinase isoenzymes from soybean. Biochem. 37, 6801-6809 https://doi.org/10.1021/bi980062q
  47. Leng, Q., R. W. Mercier, B. G. Hua, H. Fromm and G. A. Berkowitz. 2002. Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol. 128, 400-410 https://doi.org/10.1104/pp.010832
  48. Locy, R. D., S. J. Wu, J. Bisnette, T. W. Barger, D. McNabb, M. Zik, H. Fromm, N. K. Singh and J. H. Cherry. 2000. The regulation of GABA accumulation by heat stress in Arabidopsis, pp. 39-53, In Cherry, J. H., R. D. Locy and A. Rychter (eds.), Plant tolerance to abiotic stresses in agriculture: role of genetic engineering. Kluwer Academic Publishers, Dordrecht
  49. Luan, S., J. Kudla, M. Rodriguez-Concepcion, S. Yalovsky and W. Gruissem. 2002. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14, 389-400 https://doi.org/10.1105/tpc.001115
  50. Ma, L. G., Q. S. Fan, Z. Q. Yu, H. L. Zhou, F. S. Zhang and D. Y. Sun. 2000. Does aluminum inhibit pollen germination via extracellular calmodulin? Plant Cell Physiol. 41, 372-376 https://doi.org/10.1093/pcp/41.3.372
  51. MacDonald, I. R., J. W. Hart and D. C. Gordon. 1983. Analysis of growth during geotropic curvature in seedling hypocotyls. Plant Cell Environ. 6, 401-406 https://doi.org/10.1111/j.1365-3040.1983.tb01273.x
  52. McAinsh, M. and A. Hetherington. 1998. Encoding specificity in $Ca^{2+}$ signalling systems. Trends Plant Sci. 3, 32-36 https://doi.org/10.1016/S1360-1385(97)01150-3
  53. Nakagawa, Y., T. Katagiri, K. Shinozaki, Z. Qi, H. Tatsumi, T. Furuichi, A. Kishigami, M. Sokabe, I. Kojima, S. Sato, T. Kato, S. Tabata, K. Iida, A. Terashima, M. Nakano, M. Ikeda, T. Yamanaka and H. Iida. 2007. Arabidopsis plasma membrane protein crucial for $Ca^{2+}$ influx and touch sensing in roots. Proc. Natl. Acad. Sci. 104, 3639-3644 https://doi.org/10.1073/pnas.0607703104
  54. Nelissen, H., J. H. Clarke, M. D. Block, S. D. Block, R. Vanderhaeghen, R. E. Zielinski, T. Dyer, S. Lust, D. Inze and M. V. Lijsebettens. 2003. DRL1, a homolog of the yeast TOT4/KTI12 protein, has a function in meristem activity and organ growth in plants. Plant Cell 15, 639-654 https://doi.org/10.1105/tpc.007062
  55. Neuhaus, G., C. Bowler, R. Kern and N. H. Chua. 1993. Calcium/calmodulin -dependent and -independent phytochrome signal transduction pathways. Cell 73, 937-952 https://doi.org/10.1016/0092-8674(93)90272-R
  56. Nicolas, B., A. Scharlat, W. Snedden, D. Bouchez and H. Fromm. 2002. A novel family of calmodulin-binding transcription activators in multicellular organisms. J. Biol. Chem. 277, 21851-21861 https://doi.org/10.1074/jbc.M200268200
  57. Ouyang, H. and H. J. Vogel. 1998. Metal ion binding to calmodulin: NMR and fluorescence studies. Biometals 11, 213-222 https://doi.org/10.1023/A:1009226215543
  58. Pandy, S., S. B. Tiwari, K. C. Upadhyaya and S. K. Sopory. 2000. Calcium signaling: linking environmental signals to cellular functions. Crit. Rev. Plant Sci. 19, 291-318 https://doi.org/10.1016/S0735-2689(00)80006-4
  59. Patil, S., D. Takezawa and B. W. Poovaiah. 1995. Chimeric plant calcium/calmodulin-dependent protein kinase gene with a neural visinin-like calcium-binding domain. Proc. Natl. Acad. Sci. USA 92, 4897-4901 https://doi.org/10.1073/pnas.92.11.4897
  60. Polisensky, D. H. and J. Braam. 1996. Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol. 111, 1271-1279 https://doi.org/10.1104/pp.111.4.1271
  61. Reddy, A. S. 2001. Calcium: silver bullet in signaling. Plant Sci. 160, 381-404 https://doi.org/10.1016/S0168-9452(00)00386-1
  62. Reddy, A. S. N., S. Iyer, M. K. Malik, D. Takezawa, H. Fromm and B. W. Poovaiah. 1993. Isolation and characterization of two cDNAs that code for calmodulinbinding proteins from corn root tips. Plant Sci. 94, 109-117 https://doi.org/10.1016/0168-9452(93)90012-O
  63. Reddy, A. S. N., V. S. Reddy and M. Golovkin. 2000. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Biochem. Biophys. Res. Commun. 279, 762-769 https://doi.org/10.1006/bbrc.2000.4032
  64. Reddy, A. S. N., I. S. Day, S. B. Narasimhulu, F. Safadi, V. S. Reddy, M. Golovkin and M. J. Harnly. 2002. Isolation and characterization of a novel calmodulin-binding protein from potato. J. Biol. Chem. 277, 4206-4214 https://doi.org/10.1074/jbc.M104595200
  65. Ryals, J. A., U. H. Neuenschwander, M. G. Willits, A. Molina, H. Y. Steiner and M. D. Hunt. 1996. Systemic acquired resistance. Plant Cell 8, 1809-1819 https://doi.org/10.2307/3870231
  66. Safadi, F., V. S. Reddy and A. S. Reddy. 2000. A pollen-specific novel calmodulin binding protein with tetratricopeptide repeats. J. Biol. Chem. 275, 35457-35470 https://doi.org/10.1074/jbc.M002720200
  67. Sanders, D., C. Brownlee and J. F. Harper. 1999. Communicating with calcium. Plant Cell 11, 691-706 https://doi.org/10.2307/3870893
  68. Sathyanarayanan, P. V. and B. W. Poovaiah. 2004. Decoding $Ca^{2+}$ signal in plants. Crit. Rev. Plant Sci. 23, 1-11 https://doi.org/10.1080/07352680490273310
  69. Snedden, W. A. and H. Fromm. 1998. Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci. 3, 299-304 https://doi.org/10.1016/S1360-1385(98)01284-9
  70. Snedden, W. A. and H. Fromm. 2001. Calmodulin as a versatile calcium signal transducer in plants. New Physiol. 151, 35-66 https://doi.org/10.1046/j.1469-8137.2001.00154.x
  71. Snedden, W. A., N. Koutsia, G. Baum and H. Fromm. 1996. Activation of a recombinant petunia glutamate decarboxylase by calcium/calmodulin or by a monoclonal antibody which recognizes the calmodulin-binding domain. J. Biol. Chem. 271, 4148-4153 https://doi.org/10.1074/jbc.271.8.4148
  72. Snedden, W. and E. Blumwald. 2000. Alternative splicing of a novel diacylglycerol kinase in tomato leads to a calmodulin-binding isoform. Plant J. 24, 317-326 https://doi.org/10.1046/j.1365-313x.2000.00877.x
  73. Steinebrunner, I., J. Wu, Y. Sung, A. Corbett and S. J. Roux. 2003. Disruption of apyrases inhibits pollen germination in Arabidopsis. Plant Physiol. 131, 1638-1647 https://doi.org/10.1104/pp.102.014308
  74. Subbaiah, C. C. and M. M. Sachs. 2000. Maize cap1 encodes a novel SERCA-type calcium-ATPase with a calmodulinbinding domain. J. Biol. Chem. 275, 21678-21687 https://doi.org/10.1074/jbc.M001484200
  75. Sunkar, R., B. Kaplan, N. Bouche, T. Arazi, D. Dolev, I. N. Talke, F. J. M. Maathuis, D. Sanders, D. Bouchez and H. Fromm. 2000. Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of thehomologous Arabidopsis CNGC1 gene confer $Pb^{2+}$ tolerance. Plant J. 24, 533-542 https://doi.org/10.1046/j.1365-313x.2000.00901.x
  76. Takezawa, D., S. Ramachandiran, V. Paranjape and B. W. Poovaiah. 1996. Dual regulation of a chimeric plant serine/threonine kinase by calcium and calcium/ calmodulin. J. Biol. Chem. 271, 8126-8132 https://doi.org/10.1074/jbc.271.14.8126
  77. Tomsig, J. L. and J. B. Suszkiw. 1991. Permeation of $Pb^{2+}$ through calcium channels: fura-2 measurements of voltageand dihydropyridine-sensitive $Pb^{2+}$ entry in isolated bovine chromaffin cells. Biochim. Biophys. Acta. 1069, 197-200 https://doi.org/10.1016/0005-2736(91)90124-Q
  78. Yang, T. and B. W. Poovaiah. 2000a. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J. Biol. Chem. 275, 3137-3143 https://doi.org/10.1074/jbc.275.5.3137
  79. Yang, T. and B. W. Poovaiah. 2000b. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. J. Biol. Chem. 275, 38467-38473 https://doi.org/10.1074/jbc.M003566200
  80. Yang, T. and B. W. Poovaiah. 2002a. A calmodulinbinding/ CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J. Biol. Chem. 277, 45049-45058 https://doi.org/10.1074/jbc.M207941200
  81. Yang, T. and B. W. Poovaiah. 2002b. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc. Natl. Acad. Sci. USA 99, 4097-4102 https://doi.org/10.1073/pnas.052564899
  82. Yang, T. and B. W. Poovaiah. 2003. Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci. 8, 505-512 https://doi.org/10.1016/j.tplants.2003.09.004
  83. Yang, G. and S. Komatsu. 2000. Calcium-dependent protein kinase in rice (Oryza sativa L.) lamina inclination caused by brassinolide. Plant Cell Physiol. 41, 1243-1250 https://doi.org/10.1093/pcp/pcd050
  84. Yoo, B. C. and A. C. Harmon. 1996. Intramolecular binding contributes to the activation of CDPK, a protein kinase with a calmodulin-like domain. Biochem. 35, 12029-12037 https://doi.org/10.1021/bi9606612
  85. Zielinski, R. E. 1998. Calmodulin and calmodulin-binding proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 697-725 https://doi.org/10.1146/annurev.arplant.49.1.697