DOI QR코드

DOI QR Code

Multiple Monoclonal Antibodies Produced in a Single Transgenic Plant

형질전환 식물체에서의 복합 단일 항체 단백질 생산

  • Ahn, Mi-Hyun (Department of Biological Science, College of Natural Sciences, Wonkwang University) ;
  • Oh, Eun-Yi (Department of Biological Science, College of Natural Sciences, Wonkwang University) ;
  • Song, Mi-Ra (Department of Biological Science, College of Natural Sciences, Wonkwang University) ;
  • Lu, Zhe (Department of Biological Science, College of Natural Sciences, Wonkwang University) ;
  • Kim, Hyun-Soon (Plant Genomics Research Center, KRIBB) ;
  • Joung, Hyouk (Plant Genomics Research Center, KRIBB) ;
  • Ko, Ki-Sung (Institute of Biotechnology, Wonkwang University)
  • 안미현 (원광대학교 자연과학대학 생명과학부) ;
  • 오은이 (원광대학교 자연과학대학 생명과학부) ;
  • 송미라 (원광대학교 자연과학대학 생명과학부) ;
  • ;
  • 김현순 (한국생명공학연구원 식물 유전 연구센터) ;
  • 정혁 (한국생명공학연구원 식물 유전 연구센터) ;
  • 고기성 (원광대학교 생명공학연구소)
  • Published : 2009.01.30

Abstract

Production of highly valuable immunotherapeutic proteins such as monoclonal antibodies and vaccines using plant biotechnology and genetic engineering has been studied as a popular research field. Plant expression system for mass production of such useful recombinant therapeutic proteins has several advantages over other existing expression systems with economical and safety issues. Immunotherapy of multiple monoclonal antibodies, which can recognize multiple targeting including specific proteins and their glycans highly expressed on the surface of cancer cells, can be an efficient treatment compared to a single targeting immunotherapy using a single antibody. In this study, we have established plant production system to express two different targeting monoclonal antibodies in a single transgenic plant through crossing fertilization between two different transgenic plants expressing anti-colorectal cancer mAbCO17-1A and anti-breast cancer mAbBR55, respectively. The F1 seedlings were obtained cross fertilization between the two transgenic parental plants. The presence, transcription, and protein expression of heavy chain (HC) and light chain (LC) genes of both mAbs in the seedlings were investigated by PCR, RT-PCR, and immunoblot analyses, respectively. Among all the seedlings, some seedlings did not carry or transcribe the HC and LC genes of both mAbs. Thus, the seedlings with presence and transcription of HC and LC genes of both mAbs were selected, and the selected seedlings were confirmed to have relatively stronger density of HC and LC protein bands compared to the transgenic plant expressing only each mAb. These results indicate that the F1 seedling plant with carrying both mAb genes was established. Taken together, plant crossing fertilization can be applied to generate an efficient production system expressing multiple monoclonal antibodies for immunotherapy in a single plant.

식물 생명공학 기술을 이용해 인간에게 유용한 치료단백질 및 백신을 생산하는 것은 최근에 각광받고 있는 연구 분야이다. 식물을 이용한 유용 단백질 생산은 다른 시스템에 비하여 경제적일 뿐만 아니라 병원성 인자에 대한 안전성이 있어서 유용하다고 할 수 있다. 암세포 표면에 특이적으로 발현하고 있는 분자 와 당 구조를 각각 인지할 수 있는 두 종류의 항체를 동시에 투여하는 면역 치료는 질병의 치료를 유도하는 데 있어서 효과적일 수 있다. 본 연구는 기존에 본 연구팀에서 확보하고 있었던 두 종류의 항체 단백질(mAb CO17-1A, mAb BR55) 생산 형질전환 식물체를 이용하여 상호교배를 통하여 한 식물에서 두 종류의 항체 단백질을 모두 생산하는 식물 발현 시스템 구축에 관한 연구이다. 각기 다른 유전자를 갖고 있는 식물체로부터 수분을 유도하여 씨앗을 얻고 이 씨앗을 배양하여 완벽한 식품 개체로 성장시켰으며, 그 식물체로부터 DNA, RNA, 단백질을 분리하여 형질전환 유전자를 포함하고 있는지 여부를 확인하였다. 그 결과, 개체에 차이는 있지만, 한 식물에서 두 항체 유전자를 갖고 있음을 확인할 수 있었고, 이 유전자는 식물체 내에서 안정적으로 transcription 되었음을 확인하였다. 또한, 두 종류의 항체를 동시 생산하는 식물체에서 분리한 단백질은 한 종류의 항체 단백질만 생산하는 식물체에 비하여 수용성 단백질 단위당 항체 발현률이 높게 나타나는 것을 확인하였다. 따라서 본 연구를 통하여 식물을 이 용한 유용 단백질 생산 효율을 높일 수 있는 시스템을 확립하였으며 앞으로 추가적으로 생산한 항체의 생물학적 활성 및 항암 효능, 당 구조 분석 등에 대한 연구용 수행한다면, 식물 생명공학적 방법을 통한 항체 생산에 대한 새로운 가능성을 제시할 수 있을 것으로 기대된다.

Keywords

References

  1. Adams, G. P. and L. M. Weiner. 2005. Monoclonal antibody therapy of cancer. Nat. Biotechnol. 23, 1147-1157 https://doi.org/10.1038/nbt1137
  2. Agarwal, S., R. Singh, I. Sanyal and D. V. Amla. 2008. Expression of modified gene encoding functional human alpha-1-antitrypsin protein in transgenic tomato plants. Transgenic Res. [Epub ahead of print]
  3. Bauly, J. M., I. M. Sealy, H. Macdonald, J. Brearley, S. Droge, S. Hillmer, D. G. Robinson, M. A. Venis, M. R. Blatt, C. M. Lazarus and R. M. Napier. 2000. Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin. Plant Physiol. 124, 1229-1238 https://doi.org/10.1104/pp.124.3.1229
  4. Brodzik, R., M. Glogowska, K. Bandurska, M. Okulicz, D. Deka, K. Ko. J. van der Linden, J. H. Leusen, N. Pogrebnyak, M. Golovkin, Z. Steplewski and H. Koprowski. 2006. Plant-derived anti-Lewis Y mAb exhibits biological activities for efficient immunotherapy against human cancer cells. Proc. Natl. Acad. Sci. USA 103, 8804-8809 https://doi.org/10.1073/pnas.0603043103
  5. Flieger, D., A. S. Hoff, T. Sauerbruch and I. G. Schmidt- Wolf. 2001. Influence of cytokines, monoclonal antibodies and chemotherapeutic drugs on epithelial cell adhesion molecule (EpCAM) and LewisY antigen expression. Clin. Exp. Immunol. 123, 9-14 https://doi.org/10.1046/j.1365-2249.2001.01435.x
  6. Helenius, A. and M. Aebi. 2001. Intracellular functions of N-linked glycans. Science 291, 2364-2369 https://doi.org/10.1126/science.291.5512.2364
  7. Ko, K., Z. Steplewski, M. Glogowska and H. Koprowski. 2005. Inhibition of tumor growth by plant-derived mAb. Proc. Natl. Acad. Sci. USA 102, 7026-7030 https://doi.org/10.1073/pnas.0502533102
  8. Ko, K., Y. Tekoah, P. M. Rudd, D. J. Harvey, R. A. Dwek, S. Spitsin, C. A. Hanlon, C. Rupprecht, B. Dietzschold, M. Golovkin and H. Koprowski. 2003. Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc. Natl. Acad. Sci. USA 100, 8013-8018 https://doi.org/10.1073/pnas.0832472100
  9. Luo, P., M. Agadjanyan, J. Qiu, M. A. Westerink, Z. Steplewski and T. Kieber-Emmons. 1998. Antigenic and immunological mimicry of peptide mimotopes of Lewis carbohydrate antigens. Mol. Immunol. 35, 865-879 https://doi.org/10.1016/S0161-5890(98)00067-4
  10. Ma, J. K., P. M. Drake and P. Christou. 2003. The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 4, 794-805 https://doi.org/10.1038/nrg1177
  11. Madjd, Z., T. Parsons, N. F. Watson, I. Spendlove, I. Ellis and L. G. Durrant. 2005. High expression of Lewis y/b antigens is associated with decreased survival in lymph node negative breast carcinomas. Breast Cancer Res. 7, R780-87 https://doi.org/10.1186/bcr1305
  12. Muldoon, L. L. and E. A. Neuwelt. 2003. BR96-DOX immunoconjugate targeting of chemotherapy in brain tumor models. J. Neurooncol. 65, 49-62 https://doi.org/10.1023/A:1026234130830
  13. Nemoto-Sasaki, Y., M. Mitsuki, M. Morimoto-Tomita, A. Maeda, M. Tsuiji and T. Irimura. 2001. Correlation between the sialylation of cell surface Thomsen-Friedenreich antigen and the metastatic potential of colon carcinoma cells in a mouse model. Glycoconj. J. 18, 895-906 https://doi.org/10.1023/A:1022252509765
  14. Pai-Scherf, L. H., J. A. Carrasquillo, C. Paik, O. Gansow, M. Whatley, D. Pearson, K. Webber, M. Hamilton, C. Allegra, M. Brechbiel, M. C. Willingham and I. Pastan. 2000. Imaging and phase I study of 111In- and 90Y-labeled anti-LewisY monoclonal antibody B3. Clin. Cancer Res. 6, 1720-1730
  15. Plunkett, T. A. and D. W. Miles. 2002. New biological therapies for breast cancer. Int. J. Clin. Pract. 56, 261-266
  16. Richter, L. J., Y. Thanavala, C. J. Arntzen and H. S. Mason. 2000. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat. Biotechnol. 18, 1167-1171 https://doi.org/10.1038/81153
  17. Scherf, U., D. T. Ross, M. Waltham, L. H. Smith, J. K. Lee, L. Tanabe, K. W. Kohn, W. C. Reinhold, T. G. Myers, D. T. Andrews, D. A. Scudiero, M. B. Eisen, E. A. Sausville, Y. Pommier, D. Botstein, P. O. Brown and J. N. Weinstein. 2000. A gene expression database for the molecular pharmacology of cancer. Nat. Genet. 24, 236-244 https://doi.org/10.1038/73439
  18. Tacket, C. O., H. S. Mason, G. Losonsky, J. D. Clements, M. M. Levine and C. J. Arntzen. 1998. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat. Med. 4, 607-609 https://doi.org/10.1038/nm0598-607
  19. Youm, J. W., J. H. Jeon, H. Kim, Y. H. Kim, K. Ko, H. Joung and H. Kim. 2008. Transgenic tomatoes expressing human beta-amyloid for use as a vaccine against Alzheimer's disease. Biotechnol. Lett. [Epuib ahead of print]
  20. Zaloudik, J., W. Li, L. Jacob, M. P. Kieny, R. Somasundaram, B. Acres, H. Song, T. Zhang, J. Li and D. Herlyn. 2002. Inhibition of tumor growth by recombinant vaccinia virus expressing GA733/CO17-1A/EpCAM/KSA/KS1-4 antigen in mice. Cancer Gene Ther. 9, 382-389 https://doi.org/10.1038/sj.cgt.7700452