DOI QR코드

DOI QR Code

De novo Expression of Hepatic UCP3 Is Time-Dependently Related with Metabolic Function in Fenofibrate-Treated High Fat Diet Rats

고지방 섭취한 쥐에서 페노파이브레이트 복용에 의한 간 UCP3 발현 기간과 대사변화 관계

  • Park, Mi-Kyoung (Department of Internal Medicine, Medical Science Research Cente, Dong-A University College of Medicine) ;
  • Kang, Ah-Young (Department of Internal Medicine, Medical Science Research Center, Dong-A University College of Medicine) ;
  • Seo, Eun-Hui (Department of Pharmacology, Medical Science Research Center, Dong-A University College of Medicine) ;
  • Joe, Yeon-Soo (Department of Pharmacology, Medical Science Research Center, Dong-A University College of Medicine) ;
  • Kang, Soo-Jeong (Department of Pharmacology, Medical Science Research Center, Dong-A University College of Medicine) ;
  • Hong, Sook-Hee (Department of Pathology, Medical Science Research Center, Dong-A University College of Medicine) ;
  • Kim, Duk-Kyu (Department of Internal Medicine, Medical Science Research Center, Dong-A University College of Medicine) ;
  • Lee, Hye-Jeong (Department of Pharmacology, Medical Science Research Center, Dong-A University College of Medicine)
  • 박미경 (동아대학교 의과대학 내과학교실, 동아대학교 의과학연구원) ;
  • 강아영 (동아대학교 의과대학 내과학교실, 동아대학교 의과학연구원) ;
  • 서은희 (동아대학교 의과대학 약리학교실, 동아대학교 의과학연구원) ;
  • 조연수 (동아대학교 의과대학 약리학교실, 동아대학교 의과학연구원) ;
  • 강수정 (동아대학교 의과대학 약리학교실, 동아대학교 의과학연구원) ;
  • 홍숙희 (동아대학교 의과대학 병리학교실, 동아대학교 의과학연구원) ;
  • 김덕규 (동아대학교 의과대학 내과학교실, 동아대학교 의과학연구원) ;
  • 이혜정 (동아대학교 의과대학 약리학교실, 동아대학교 의과학연구원)
  • Published : 2009.01.30

Abstract

Uncoupling protein 3 (UCP3) is a mitochondrial protein that is expressed predominantly in skeletal muscle. It may play a role in altering metabolic function. However, its major physiological roles are not fully understood. Recently de novo expression of UCP3 in rat liver by fenofibrate was reported. We also reported previously that fenofibrate-induced de novo expression of UCP3 contributes to reduction of adipose tissue in obese rats. In the present study, we investigated that ienofibrate-induced expression of UCP3 in rat liver is related with metabolic function such as body weight and hepatic lipid content by time-dependent manner in high-fat diet rats. Eight-week-old male Sprague-Dawley rats were randomly divided into two groups; the high fat diet group (HF, n=16) and fenofibrate-treated high fat diet group (HFF, n=16). The mRNA expression of hepatic UCP3 was detected as early as 1 week of fenofibrate treatment by quantitative real-time PCR and the amount of mRNA was increased time-dependently. The mean body weight of the HFF group was significantly less com. pared with the HF group after 6 weeks of fenofibrate treatment, even though there was no difference of food intake between the two groups. Rectal temperature was increased during 4 to 6 weeks of fenofibrate treatment and body weight was decreased after 6 weeks of treatment. These results were corresponded with the increased amount of the expression of UCP3 mRNA and protein. We suggest that de novo expression of hepatic UCP3 is increased time-dependently with fenofibrate treatment and that the amount of expression is correlated with metabolic function.

Uncoupling protein 3 (UCP3)는 골격근에서 주로 발현되는 미토콘드리아 단백질이다. 생체의 대사기능에 관여할 것으로 알려져 있지만, 아직 그 역할에 대하여 깊이 연구되어 있지 않다. 최근에 고지혈증 치료제인 페노파이브레이트를 처치한 쥐의 간에서는 UCP3가 새로이 발현 유도된다는 것이 알려졌으며, 본 연구자들은 새로이 발현되는 UCP3가 비만쥐의 지방조직올 감소시키며, 인슐린 감수성을 증가시킨다는 보고를 하였다. 본 연구에서는 이러한 새로이 발현되는 UCP3의 시간에 따른 발현 양상과 대사 기능의 연관 관계를 규명하고자 하였다. 8주령 흰쥐를 두 군으로 나누어, 한 군은 고지방 식이를 실시하고(HF군), 다른 군은 고지방 식이와 페노파이브레이트(HFF군)를 함께 복용토록 하였다. 10주 동안 식이와 약물을 처리하면서, 1, 3, 6주에 간조직올 분석하였으며, 매주 먹이량, 체중, 체온을 측정하였다. 페노파이브레이트에 의하여 간에서 새로이 발현되는 UCP3는 2주부터 시작하여 3, 6주에 아주 높은 발현 양상을 보였다. 두 군 간의 먹이량의 차이는 없는 반면, 페노파이브레이트 처리군에서 6 주부터 시작하여 체중증가가 억제되며, 오히려 감소되는 경향을 보였다. 체온은 페노파이브레이트 처리군에서 6주부터 상승하기 시작하여, UCP3의 발현에 의한 간에서의 upcoupling 현상에 따른 발열현상으로 추측할 수 있다. 이상의 결과들로 유추해 볼 때, UCP3 발현이 3-6주부터 많은 양이 생성되어 생체의 대사 기능에 영향을 미치며, 이러한 시기와 연관되어 체중, 체온의 변화와 관련이 있는 것으로 생각한다.

Keywords

References

  1. Acin, A., M. Rodriguez, H. Rique, E. Canet, J. A. Boutin and J. P. Galizzi. 1999. Cloning and characterization of the 5' flanking region of the human uncoupling protein 3 (UCP3) gene. Biochem. Biophys. Res. Commun. 258, 278-283 https://doi.org/10.1006/bbrc.1999.0530
  2. Auboeuf, D., J. Rieusset, L. Fajas, P. Vallier, V. Frering, J. P. Riou, B. Staels, J. Auwerx, M. Laville and H. Vidal. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. 1997. Diabetes 46, 1319-1327 https://doi.org/10.2337/diabetes.46.8.1319
  3. Braissant, O., F. Foufelle, C. Scotto, M. Dauca and W. Wahli. 1996. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137, 354-366 https://doi.org/10.1210/en.137.1.354
  4. Clapham, J. C., J. R. Arch, H. Chapman, A. Haynes, C. Lister, G. B. Moore, V. Piercy, S. A. Carter, I. Lehner, S. A. Smith, L. J. Beeley, R. J. Godden, N. Herrity and A. Abuin. 2000. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 406, 415-418 https://doi.org/10.1038/35019082
  5. Desvergne, B. and W. Wahli. Peroxisome proliferator- activated receptors: nuclear control of metabolism. 1999. Endocr. Rev. 20, 649-688 https://doi.org/10.1210/er.20.5.649
  6. Enerback, S., A. Jacobsson, E. M. Simpson, C. Guerra, H. Yamashita, M. E. Harper and L. P. Kozak. 1997. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90-94 https://doi.org/10.1038/387090a0
  7. Guerre-Millo, M., P. Gervois, E. Raspe, L. Madsen, P. Poulain, B. Derudas , J. M. Herbert , D. A. Winegar, T. M. Willson, J. C. Fruchart, R. K. Berge, B. Staels. 2000 Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity. J. Biol. Chem. 275, 16638-16642 https://doi.org/10.1074/jbc.275.22.16638
  8. Himms-Hagen, J. Brown adipose tissue thermogenesis and obesity. 1989. Prog. Lipid Res. 28, 67-115 https://doi.org/10.1016/0163-7827(89)90009-X
  9. Himms-Hagan, J. and M. E. Harper. 2001. Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp. Biol. Med. 226, 78-84
  10. Ishigaki, Y., H. Katagiri, T. Yamada, T. Ogihara, J. Imai, K. Uno, Y. Hasegawa, J. Gao, H. Ishihara, T. Shimosegawa, H. Sakoda, T. Asano and Y. Oka. 2005 Dissipating excess energy stored in the liver is a potential treatment strategy for diabetes associated with obesity. Diabetes 54, 322-332 https://doi.org/10.2337/diabetes.54.2.322
  11. Issemann, I. and S. Green. 1990. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645-650 https://doi.org/10.1038/347645a0
  12. Lanni, A., F. Mancini, L. Sabatino, E. Silvestri, R. Franco, G. De Rosa, F. Goglia and V. Colantuoni. 2002. De novo expression of uncoupling protein 3 is associated to enhanced mitochondrial thioesterase-1 expression and fatty acid metabolism in liver of fenofibrate-treated rats. FEBS Lett. 525, 7-12 https://doi.org/10.1016/S0014-5793(02)02828-4
  13. Lee, H. J., S. S. Choi, M. K. Park, Y. J. An, S. Y. Seo, M. C. Kim, S. H. Hong, T. H. Hwang, D. Y. Kang, A. J. Garber and D. K. Kim. 2002. Fenofibrate lowers abdominal and skeletal adiposity and improves insulin sensitivity in OLETF rats. Biochem. Biophys. Res. Comm. 296, 293-299 https://doi.org/10.1016/S0006-291X(02)00822-7
  14. Linton, M. F. and S. Fazio. 2000. Re-emergence of fibrates in the management of dyslipidemia and cardiovascular risk. Curr. Atheroscler. Rep. 2, 29-35 https://doi.org/10.1007/s11883-000-0092-2
  15. Mancini, F. P., A. Lanni, L. Sabatino, M. Moreno, A. Giannino, F. Contaldo, V. Colantuoni and F. Goglia. 2001. Fenofibrate prevents and reduces body weight gain and adiposity in diet-induced obese rats. FEBS Lett. 491, 154-158 https://doi.org/10.1016/S0014-5793(01)02146-9
  16. Mao, W., X. X. Yu, A. Zhong, W. Li, J. Brush, S. W. Sherwood, S. H. Adams and G. Pan. 1999, UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett. 443, 326-330 https://doi.org/10.1016/S0014-5793(98)01713-X
  17. Moore, G. B., J. Himms-Hagen, M. E. Harper and J. C. Clapham. 2001. Overexpression of UCP-3 in skeletal muscle of mice results in increased expression of mitochondrial thioesterase mRNA. Biochem. Biophys. Res. Commun. 283, 785-790 https://doi.org/10.1006/bbrc.2001.4848
  18. Park, M. K., H. J. Lee, S. H. Hong, S. S. Choi, Y. H. Yoo, K. I. Lee and D. K. Kim. 2007. The increase in hepatic uncoupling by fenofibrate contributes to a decrease in adipose tissue in obese rats. J. Korean Med. Sci. 22, 235-241 https://doi.org/10.3346/jkms.2007.22.2.235
  19. Ricquier, D. and F. Boouillaud. 2000. Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance. J. Physiol. 529, 3-10 https://doi.org/10.1111/j.1469-7793.2000.00003.x
  20. Silva, J. E. and R. Rabelo. 1997. Regulation of the uncoupling protein gene expression. Eur. J. Endocrinol. 136, 251-264 https://doi.org/10.1530/eje.0.1360251
  21. Ye, J. M., P. J. Doyle, M. A. Iglesias, D. G. Watson, G. J. Coone and E. W. Kraegen. 2001. Peroxisome proliferator-activated receptor (PPAR)-alpha activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: comparison with PPAR-gamma activation. Diabetes 50, 411-417 https://doi.org/10.2337/diabetes.50.2.411
  22. Yoon, M., S. Jeong, C. J. Nicol, H. Lee, M. Han, J. J. Kim, Y. J. Seo, C. Ryu, G.T. Oh. 2002. Fenofibrate regulates obesity and lipid metabolism with sexual dimorphism. Exp. Mol. Med. 34, 481-488
  23. Yu, X. X., W. Mao, A. Zhong, P. Schow, J. Brush, S. W. Sherwood, S. H. Adams and G. Pan. 2000. Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation. FASEB J. 14,1611-1618 https://doi.org/10.1096/fj.14.11.1611