DOI QR코드

DOI QR Code

N-methyl-N'-nitro-N-nitrosoguanidine에 의한 인체백혈병세포의 G2/M arrest 유발에서 Cdk inhibitor p21(WIP1/CIP1)의 관련성

Involvement of Cdk Inhibitor p21(WIP1/CIP1) in G2/M Arrest of Human Myeloid Leukemia U937 Cells by N-Methyl-N'-Nitro-N-Nitrosoguanidine

  • 최영현 (동의대학교 한의과대학 생화학교실 및 대학원 바이오물질제어학과)
  • Choi, Yung-Hyun (Department of Biochemistry, Dongeui University College of Oriental Medicine and Department of Biomaterial Control, Dongeui University Graduate School)
  • 발행 : 2009.01.30

초록

본 연구에서는 monofunctional alkylating agent인 N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) 에 의한 인체 백혈병 U937 세포의 증식억제에 관한 기전 확인하였다. MNNG에 의한 U937 세포의 증식억제는 세포주기 G2/M arrest 및 apoptosis 유방과 연관이 있었으며, MNNG 는 G2/M기 조절에 관여하는 주요 cyclin 및 Cdk들의 발현 수준에는 큰 영향이 없었으나 cyclin B1 및 Cdk2-associated kinase의 활성을 매우 저하시켰다. MNNG 처리로 Cdk inhibit p2l(WAF1/CIP1)이 전사 및 번역 수준에서 발연이 증가되었으며, p21 promoter 의 활성도 증가되었다. p21 promoter deletion constructs을 이용한 연구에서 MNNG의 responsive element 부위는 전사 개시 부위 113-61 부근임을 확인하였다. 이 결과들은 MNNG에 의한 cyclin/Cdk 복합체의 kinase 활성 저하가 p53 비의존적인 p21의 활성 증가에 기인한 것임을 보여주는 것이며, 이는 MNNG의 암세포에서의 항암기전을 이해하는 귀중한 자료로서 제공될 것으로 기대된다.

In this paper, to elucidate the further mechanisms of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced growth arrest, we investigated the effect of MNNG on cell cycle and proliferation in U937 cells, a p53-null human myeloid leukemia cell line. It was found that MNNG causes an arrest at the G2/M phase of the cell cycle and induces apoptosis, which is closely correlated to inhibition of cyclin B1 and cyelin-dependent kinase (Cdk) 2-associated kinase activities. MNNG treatment in. creased protein and mRNA levels of the Cdk inhibitor p21(WAF1/CIP1), and activated the reporter construct of a p21 promoter. By using p21 promoter deletion constructs, the MNNG-responsive element was mapped to a region between 113 and 61 relative to the transcription start site. These data indicate that in U937 cells MNNG can circumvent the loss of wild-type p53 function and induce critical downstream regulatory events leading to transcriptional activation of p21. Present results indicate that the p53-independent up-regulation of p21 by MNNG is likely responsible for the inhibition of cyclin/Cdk complex kinase activity rather than the down-regulation of cyclins and Cdks expression. These novel phenomena have not been previously described and provide important new insights into the possible biological effects of MNNG.

키워드

참고문헌

  1. Adamson, A. W., D. I. Beardsley, W. J. Kim, Y. Gao, R. Baskaran and K. D. Brown. 2005. Methylator-induced, mismatch repair-dependent G2 arrest is activated through Chk1 and Chk2. Mol. Biol. Cell 16, 1513-1526 https://doi.org/10.1091/mbc.E04-02-0089
  2. Adamson, A. W., W. J. Kim, S. Shangary, R. Baskaran and K. D. Brown. 2002. ATM is activated in response to N-methyl-N'-nitro-N-nitrosoguanidine-induced DNA alkylation. J. Biol. Chem. 277, 38222-38229 https://doi.org/10.1074/jbc.M204409200
  3. Bielawski, K. and A. Bielawska. 2008. Small-molecule based delivery systems for alkylating antineoplastic compounds. Chem. Med. Chem. 3, 536-542 https://doi.org/10.1002/cmdc.200700229
  4. Biggs, J. R. and A. S. Kraft. 1999. The role of the Smad3 protein in phorbol ester-induced promoter expression. J. Biol. Chem. 274, 36987-36994 https://doi.org/10.1074/jbc.274.52.36987
  5. Biggs, J. R., J. E. Kudlow and A. S. Kraft. 1996. The role of the transcription factor Sp1 in regulating the expression of the WAF1/CIP1 gene in U937 leukemic cells. J. Biol. Chem. 271, 901-906 https://doi.org/10.1074/jbc.271.2.901
  6. Casorelli, I., M. T. Russo and M. Bignami. 2008. Role of mismatch repair and MGMT in response to anticancer therapies. Anticancer Agents Med. Chem. 8, 368-380 https://doi.org/10.1002/jcb.22048
  7. Cejka, P., L. Stojic, N. Mojas, A. M. Russell, K. Heinimann, E. Cannavo, M. di Pietro, G. Marra and J. Jiricny. 2003. Methylation-induced G(2)/M arrest requires a full complement of the mismatch repair protein hMLH1. EMBO J. 22, 2245-2254 https://doi.org/10.1093/emboj/cdg216
  8. Chin, Y. E., M. Kitagawa, W. C. Su, Z. H. You, Y. Iwamoto and X. Y. Fu. 1996. Cell growth arrest and induction of cyclin- dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science 272, 719-722 https://doi.org/10.1126/science.272.5262.719
  9. Danova, M., M. Giordano and G. A. Mazzini. 1990. Expression of p53 protein during the cell cycle measured by flow cytometry in human leukemia. Leuk. Res. 14. 417-422 https://doi.org/10.1016/0145-2126(90)90027-7
  10. Datto, M. B., Y. Yu and X. F. Wang. 1995. Functional analysis of the transforming growth factor $\beta$ responsive elements in the WAF/Cip1/p21 promoter. J. Biol. Chem. 270, 28623-28628 https://doi.org/10.1074/jbc.270.48.28623
  11. de Carcer, G., I. Perez de Castro and M. Malumbres. 2007. Targeting cell cycle kinases for cancer therapy. Curr. Med. Chem. 14, 969-985 https://doi.org/10.2174/092986707780362925
  12. de Siervi, A., M. Marinissen, J. Diggs, X. P. Wang, G. Pages and A. Senderowicz. 2004. Transcriptional activation of p21(waf1/cip1) by alkylphospholipids: role of the mitogen-activated protein kinase pathway in the transactivation of the human p21(waf1/cip1) promoter by Sp1. Cancer Res. 64, 743-750 https://doi.org/10.1158/0008-5472.CAN-03-2505
  13. Duckett, D. R., S. M. Bronstein, Y. Taya and P. Modrich. 1996. hMutS$\alpha$- and hMutL$\alpha$-dependent phosphorylation of p53 in response to DNA methylator damage. Proc. Natl. Acad. Sci. USA 96, 12384-12388 https://doi.org/10.1073/pnas.96.22.12384
  14. el-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825 https://doi.org/10.1016/0092-8674(93)90500-P
  15. Fang, M. Z., M. H. Lee, Y. S. Lee, Y. C. Kim, B. M. Lee and M. H. Cho. 2002. Low expression of cyclin D2 in G2/M-arrested and transformed proliferating Balb/3T3 cells. J. Vet. Med. Sci. 64, 201-205 https://doi.org/10.1292/jvms.64.201
  16. Fang, M. Z., W. C. Mar and M. H. Cho. 2001. Cell cycle was disturbed in the MNNG-induced initiation stage during in vitro two-stage transformation of Balb/3T3 cells. Toxicology 163, 175-184 https://doi.org/10.1016/S0300-483X(01)00400-0
  17. Hickman, M. J. and L. D. Samson. 1999. Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents. Proc. Natl. Acad. Sci. USA 96, 10764-10769 https://doi.org/10.1073/pnas.96.19.10764
  18. Hour, T. C., S. Y. Shiau and J. K Lin. 1999. Suppression of N-methyl-N'-nitro-N-nitrosoguanidine- and S-nitrosoglutathione-induced apoptosis by Bcl-2 through inhibiting glutathione-S-transferase pi in NIH3T3 cells. Toxicol. Lett. 110, 191-202 https://doi.org/10.1016/S0378-4274(99)00158-7
  19. Huang, L., Y. Sowa, T. Sakai and A. B. Pardee. 2000. Activation of the p21WAF1/CIP1 promoter independent of p53 by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) through the Sp1 sites. Oncogene 19, 5712-5719 https://doi.org/10.1038/sj.onc.1203963
  20. Izbicka, E. and A. W. Tolcher. 2004. Development of novel alkylating drugs as anticancer agents. Curr. Opin. Investig. Drugs 5, 587-591
  21. Jaiswal, A. S., A. S. Multani, S. Pathak and S. Narayan. 2004. N-methyl-N'-nitro-N-nitrosoguanidine-induced senescencelike growth arrest in colon cancer cells is associated with loss of adenomatous polyposis coli protein, microtubule organization, and telomeric DNA. Mol. Cancer 3, 3 https://doi.org/10.1186/1476-4598-3-3
  22. Jaiswal, A. S. and S. Narayan. 2002. SN2 DNA-alkylating agent-induced phosphorylation of p53 and activation of p21 gene expression. Mutat. Res. 500, 17-30 https://doi.org/10.1016/S0027-5107(01)00296-2
  23. Koutsodontis, G., I. Tentes, P. Papakosta, A. Moustakas and D. Kardassis. 2001. Sp1 plays a critical role in the transcriptional activation of the human cyclin-dependent kinase inhibitor p21(WAF1/Cip1) gene by the p53 tumor suppressor protein. J. Biol. Chem. 276, 29116-29125 https://doi.org/10.1074/jbc.M104130200
  24. Krek, W. and E. A. Nigg. 1991. Differential phosphorylation of vertebrate $p34^{Cdc2}$ kinase at the G1/S and G2/M transitions of the cell cycle: identification of major phosphorylation sites. EMBO J. 10, 305-316
  25. Lee, M. H. and H. Y. Yang. 2001. Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mol. Life Sci. 58, 1907-1922 https://doi.org/10.1007/PL00000826
  26. Lee, S. J., M. J. Ha, J. Lee, P. Nguyen, Y. H. Choi, F. Pirnia, W. K. Kang, X. F. Wang, S. J. Kim and J. B. Trepel. 1998. Inhibition of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase pathway induces p53-independent transcriptional regulation of p21(WAF1/CIP1) in human prostate carcinoma cells. J. Biol. Chem. 273, 10618-10623 https://doi.org/10.1074/jbc.273.17.10618
  27. Lin, Y. C., J. H. Lin, C. W. Chou, Y. F. Chang, S. H. Yeh and C. C. Chen. 2008. Statins increase p21 through inhibition of histone deacetylase activity and release of promoter-associated HDAC1/2. Cancer Res. 68, 2375-2383 https://doi.org/10.1158/0008-5472.CAN-07-5807
  28. Liu, M., M. H. Lee, M. Cohen, M. Bommakanti and L. P. Freedman. 1996. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev. 10, 142-153 https://doi.org/10.1101/gad.10.2.142
  29. Martínez, R. and L. Chacon-García. 2005. The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr. Med. Chem. 12, 127-151 https://doi.org/10.2174/0929867053363414
  30. Ohsumi, K., C. Katagiri and T. Kishimoto. 1993. Chromosome condensation in Xenopus mitotic extracts without histone H1. Science 262, 2033-2035 https://doi.org/10.1126/science.8266099
  31. Park, C., B. T. Choi, J. Cheong, S. K. Moon, C. H. Kim, W. H. Lee and Y. H. Choi. 2004. Induction of apoptosis and G2/M arrest by N-methyl-N'-nitro-N-nitrosoguanidine in human prostate carcinoma cells. Mutat. Res. 563, 139-149 https://doi.org/10.1016/j.mrgentox.2004.06.007
  32. Park, C., B. T. Choi, K. I. Kang, T. K. Kwon, J. Cheong, W. H. Lee, N. D. Kim and Y. H. Choi. 2005. Induction of apoptosis and inhibition of cyclooxygenase-2 expression by N-methyl-N'-nitro-N-nitrosoguanidine in human leukemia cells. Anticancer Drugs 16, 507-513 https://doi.org/10.1097/00001813-200506000-00006
  33. Pawlik, T. M. and K. Keyomarsi. 2004. Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 59, 928-942 https://doi.org/10.1016/j.ijrobp.2004.03.005
  34. Pei, X. H. and Y. Xiong. 2005. Biochemical and cellular mechanisms of mammalian CDK inhibitors: a few unresolved issues. Oncogene 24, 2787-2795 https://doi.org/10.1038/sj.onc.1208611
  35. Pors, K. and L. H. Patterson. 2005. DNA mismatch repair deficiency, resistance to cancer chemotherapy and the development of hypersensitive agents. Curr. Top. Med. Chem. 5, 1133-1149 https://doi.org/10.2174/156802605774370883
  36. Shapiro, G. I. 2006. Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 24, 1770-1783 https://doi.org/10.1200/JCO.2005.03.7689
  37. Sleiman, R. J., D. R. Catchpoole and B. W. Stewart. 1998. Drug-induced death of leukaemic cells after G2/M arrest: higher order DNA fragmentation as an indicator of mechanism. Br. J. Cancer 77, 40-50 https://doi.org/10.1016/S0304-3835(98)00071-8
  38. Xiao, H., T. Hasegawa and K. Isobe. 1999. Both Sp1 and Sp3 are responsible for p21waf1 promoter activity induced by histone deacetylase inhibitor in NIH3T3 cells. J. Cell Biochem. 73, 291-302 https://doi.org/10.1002/(SICI)1097-4644(19990601)73:3<291::AID-JCB1>3.0.CO;2-5