DOI QR코드

DOI QR Code

A Combined Forecast Scheme of User-Based and Item-based Collaborative Filtering Using Neighborhood Size

이웃크기를 이용한 사용자기반과 아이템기반 협업여과의 결합예측 기법

  • 최인복 (단국대학교 컴퓨터과학 및 통계학과) ;
  • 이재동 (단국대학교 컴퓨터학부)
  • Published : 2009.02.28

Abstract

Collaborative filtering is a popular technique that recommends items based on the opinions of other people in recommender systems. Memory-based collaborative filtering which uses user database can be divided in user-based approaches and item-based approaches. User-based collaborative filtering predicts a user's preference of an item using the preferences of similar neighborhood, while item-based collaborative filtering predicts the preference of an item based on the similarity of items. This paper proposes a combined forecast scheme that predicts the preference of a user to an item by combining user-based prediction and item-based prediction using the ratio of the number of similar users and the number of similar items. Experimental results using MovieLens data set and the BookCrossing data set show that the proposed scheme improves the accuracy of prediction for movies and books compared with the user-based scheme and item-based scheme.

협업여과는 추천시스템에서 널리 사용되는 기법으로 다른 사용자의 평가를 기반으로 아이템을 추천하는 기법이다. 사용자 데이터베이스를 이용하는 메모리기반 협업여과에는 사용자기반 기법과 아이템기반 기법이 있다. 사용자기반 협업여과는 유사한 선호도를 가지는 이웃사용자들의 선호도를 바탕으로 특정 아이템에 대한 선호도를 예측하는 반면, 아이템기반 협업여과는 아이템들의 유사도를 바탕으로 특정 사용자의 선호도를 예측한다. 본 논문에서는 추천의 성능을 향상시키기 위하여 이웃사용자와 이웃아이템 크기의 비율을 가중치로 하여 사용자기반 예측값과 아이템기반 예측값을 결합함으로써 최종 예측값을 생성하는 결합예측기법을 제안한다. MovieLens 데이터 셋과 BookCrossing 데이터 셋을 이용한 실험을 통해 본 논문에서 제안한 결합예측기법이 영화와 책에 대하여 사용자기반과 아이템기반보다 예측의 정확성을 향상시킴을 보인다.

Keywords

References

  1. 고수정, 김진수, 김태용, 최준혁, 이정현, “협력적 여과와 내용 기반 여과의 병합을 통한 추천 시스템에서의 사용자 선호도 발견”, 정보과학회논문지 제7권 제6호, Dec. 2001
  2. 김연형, “결합예측에 관한 연구”, 응용통계연구 제1권 제2호, pp.111-124, 1986
  3. 박지선, 김택헌, 류영석, 양성봉, “추천 시스템을 위한 2-way 협동적 필터링 방법을 이용한 예측 알고리즘”, 정보과학회논문지:소프트웨어및응용 제29권 제9호, pp.669-675, Oct. 2002
  4. 이용준, 이세훈, 왕창종, “인구 통계 정보를 이용한 협업 여과 추천의 유사도 개선 기법”, 정보과학회논문지:컴퓨팅의실제 제9권 제5호, pp.521-529, Oct. 2003
  5. 이우리, “결합예측 방법에 의한 종합주가지수의 예측”, 논문집 제44권 제1호, pp.309-333, 2000
  6. 이태희, 김홍재, “AHP와 ANP의 결합을 통한 합리적 예측모델 구축”, 한국경영과학회 학술대회 논문집 제2호, pp.229-232, 1997
  7. 이형동, 김형주, “협업 필터링 추천시스템에서의 취향 공간을 이용한 평가 예측 기법”, 정보과학회논문지:데이터베이스 제34권 제5호, Oct. 2007
  8. 지애띠, 연철, 이승훈, 김흥남, 조근식, “분산 환경에서의 협력적 여과를 위한 멀티 에이전트 프레임워크”, 한국지능정보시스템학회논문지 제13권 제3호, pp.119-140, Sep. 2007
  9. 최인복, 박태근, 이재동, “소비자의 감성과 소비유형을 이용한 협업여과기반 콘텐츠 추천 기법”, 정보처리학회논문지D, 제15-D권 제3호, June 2008 https://doi.org/10.3745/KIPSTD.2008.15-D.3.421
  10. Badrul Sarwar, George Karypis, Joseph Konstan, John Riedl, “Item-based Collaborative Filtering Recommendation Algorithms,” Proceedings of the 10th International Conference on World Wide Web, Apr. 2001 https://doi.org/10.1145/371920.372071
  11. Breese, J., Heckerman, D. and Kadie, C., “Empirical Analysis of Prediction Algorithms for Collaborative Filtering,” Proc. of the 14th Conference on Uncertainly in Artificial Intelligence, pp.43-52, 1998
  12. Gediminas Adomavicius and Alexander Tuzhilin, “Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions,” IEEE Transactions on Knowledge and Data Engineering, Vol.17, Issue 6, pp.737-749, Apr. 2005 https://doi.org/10.1109/TKDE.2005.99
  13. Greg Linden, Brent Smith and Jeremy York, “Amazon.com recommendations: item-to-item collaborative filtering,” Internet Computing, IEEE, Vol.7, Issue 1, pp.76-80, Jan. 2003 https://doi.org/10.1109/MIC.2003.1167344
  14. John Benjamin Schafer, Joseph Konstan, John Riedl, “Recommender systems in e-commerce,” Proceedings of the 1st ACM conference on Electronic commerce, Nov. 1999 https://doi.org/10.1145/336992.337035
  15. Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen and John T. Riedl, “Evaluating collaborative filtering recommender systems,” ACM Transactions on Information Systems (TOIS), Vol.22, Issue 1, pp.5-53, Jan. 2004 https://doi.org/10.1145/963770.963772
  16. Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers and John Riedl, “An Algorithmic Framework for Performing Collaborative Filtering,” Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.230-237, Aug. 1999 https://doi.org/10.1145/312624.312682
  17. Jun Wang, Arjen P. Vries and Marcel J.T. Reinders, “Unified Relevance Models for Rating Prediction in Collaborative Filtering,” ACM Transactions on Information Systems, Vol.26, No.3, June 2008 https://doi.org/10.1145/1361684.1361689
  18. Jun Wang, Arjen P. de Vries and Marcel J.T. Reinders, “Unifying User-based and Item-based Collaborative Filtering Approaches by Similarity Fusion,” ACM SIGIR '06, Aug. 2006 https://doi.org/10.1145/1148170.1148257
  19. Manos Papagelis and Dimitris Plexousakis, “Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents,” Engineering Applications of Artificial Intelligence 18, pp.781-789, June 2005 https://doi.org/10.1016/j.engappai.2005.06.010
  20. Rong Hu and Yansheng Lu, “A Hybrid User and Item-Based Collaborative Filtering with Smoothing on Sparse Data,” ICAT '06, pp.184-189, Nov. 2006 https://doi.org/10.1109/ICAT.2006.12
  21. http://www.grouplens.org/system/files/ml-data_0.zip
  22. http://www.informatik.uni-freiburg.de/~cziegler/BX/