DOI QR코드

DOI QR Code

Simple and Highly Efficient Droplet Merging Method Using a Microfluidic Device

미세유체소자를 이용한 간단하고 효율적인 액적의 병합

  • 진병주 (서울대학교 기계항공공학부) ;
  • 김영원 (서울대학교 기계항공공학부) ;
  • 유정열 (서울대학교 기계항공공학부, 서울대학교 정밀기계설계공동연구소)
  • Published : 2009.03.01

Abstract

Simple and highly efficient droplet merging method is proposed, which enables two nanoliter or picoliter droplets to merge regularly in a straight microchannel. Using a cross channel with inflows of one oil phase through the main channel and two water phases through the side channels, two droplets of different sizes can be generated alternatingly in accordance with flow rate difference of the water phases. It is shown that for a fixed oil phase flow rate, the flow rate of one water phase required for alternating droplet generation increases linearly with the flow rate of another water phase. By this method, the droplets are merged with 100 % efficiency without any additional driving forces.

Keywords

References

  1. Song, H., Tice, J. D. and Ismagilov, R. F., 2003, “A Micofluidic System for Controlling Raction Networks in Time,” Angew. Chem. Int. Ed., Vol. 42, No. 7, pp. 768-772 https://doi.org/10.1002/anie.200390203
  2. Song, H., Chen, D. L. and Ismagilov, R. F., 2006, "Reactions in Droplets in Microfluidic Channels," Angew. Chem, Int. Ed., Vol. 45, pp. 7336-7356 https://doi.org/10.1002/anie.200601554
  3. Liu, K., Ding, H., Chen, Y. and Zhao, X.-Z., 2007, "Droplet-Based Synthetic Method Using Microflow Focusing and Droplet Fusion," Microfluid Nanofluid, Vol. 3, pp. 239-243 https://doi.org/10.1007/s10404-006-0121-8
  4. Wang, C., Nguyen, N.-T. and Wong, T. N., 2007, "Optical Measurement of Flow Field and Concentration Field inside a Moving Nanoliter Droplet," Sensors and Actuators A, Vol. 133, pp. 317-322 https://doi.org/10.1016/j.sna.2006.06.026
  5. Link, D R., Graslan-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z., Cristobal, G., Marquez, M. and Weitz, D. A., 2006, “Electric Control of Droplets in Microfluidic Devices,” Angew. Chem.Int. Ed., Vol. 45, pp. 2556-2560 https://doi.org/10.1002/anie.200503540
  6. Tan, Y.-C., Ho, Y. L. and Lee, A. P., 2007, “Droplet Coalescence by Geometrically Mediated Flow in Microfluidic Channels,” Mircofluid Nanofluid, Vol. 3, pp. 495-499 https://doi.org/10.1007/s10404-006-0136-1
  7. Shintaku, H., Kuwabara, T., Kawano, S., Suzuki, T., Kanno, I. and Kotera, H., 2007, “Micro Cell Encapsulation and its Hydrogel-Beads ProductionUsing Microfuidic Device,” Microsyst Technol, Vol. 13, pp. 951-958 https://doi.org/10.1007/s00542-006-0291-z
  8. Ahn, K., Agesti, J., Chong, H., Marquez, M. an Weitz, D. A., 2006, “Electrocoalescence of Drops Synchronized by Size-Dependent Flow in Microfluidic Channels,” Appl. Phys. Lett., Vol. 88, 264105-1-3 https://doi.org/10.1063/1.2218058
  9. Zheng, B., Tice, J. D. and Ismagilov, R. F., 2004, “Formation of Droplets of Alternating Composition in Microfluidic Channels and Applications t Indeng of Concentrations in Droplet-Based Assays,” Anal. Chem., Vol. 76, pp. 4977-4982 https://doi.org/10.1021/ac0495743
  10. Okushima, S., Nisisako, T., Torii, T. andHigchi, T., 2004, “Controlled Production of Monodisperse Double Emulsions by Two-Step Droplet Breakup in Microfluidic Devices,” Langmuir, Vol. 20, pp. 9905-9908 https://doi.org/10.1021/la0480336
  11. Hung, L.-H., Choi, K. M., Tseng, W.-Y., Tan, Y.-C., Shea, K, J. and Lee, A. P., 2006, “Alternting Droplet Generation and Controlled Dynamic Droplet Fusion in Microfluidic Device for CdS Nanoparticle Synthesis,” Lab Chip, Vol. 6, pp. 174-178 https://doi.org/10.1039/b513908b
  12. Hung, L.-H. and Lee, A. P., 2004, "Optimization of Droplet Generation by Controlling PDMS Surface Hydrophobicity," 2004 ASME International Mechanical Engineering Congress and RD&D Exop, November 13-19, Anaheim, California
  13. Garstecki, p., Fuerstman, M. J., Stone, H. A. and Whitesides, G. M., 2006, "Formation of Droplets and Bubbles in a Microfluidic T-junction-Scaling and Mechanism of Break-up," Lab Chip, Vol. 6, pp. 437-446 https://doi.org/10.1039/b510841a
  14. Fairbrother, F. and Stubbs, A. E., 1935, “Studies in Electro-Endosmosis. Part IV. The “Bubble-tube” Method of Measurement,”, J. Chem. Soc., Vol. 1, pp. 527-529 https://doi.org/10.1039/jr9350000527
  15. Bretherton, F. P., 1961, “The Motion of Long Bubbles in Tubes,” J. Fluid Mech., Vol. 10, pp. 166-188 https://doi.org/10.1017/S0022112061000160
  16. Ho, B. P. and Leal, L. G., 1975, “The Creeping Motion of Liquid Drops through a Circular Tube of Comparable Diameter,” J. Fluid Mech., Vol. 71, pp. 361-383 https://doi.org/10.1017/S0022112075002625
  17. Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H. and Beebe, D. J., 2000, “Passive Mixing in a Three-Dimensional Serpentine Microchannel,” J. Microelectromechanical Systems, Vol. 9, No. 2, pp. 190-197 https://doi.org/10.1109/84.846699
  18. Liu, Y. Z., Kim, B. J. and Sung, H. J., 2004, “Two-Fluid Mixing in a Microchannel,” International Journal of Heat and Fluid Flow, Vol. 25, pp. 986-995 https://doi.org/10.1016/j.ijheatfluidflow.2004.03.006