DOI QR코드

DOI QR Code

Development of Monitoring Tool for Synaptic Weights on Artificial Neural Network

인공 신경망의 시냅스 가중치 관리용 도구 개발

  • 신현경 (경원대학교 수학정보학과)
  • Published : 2009.02.28

Abstract

Neural network is a very exciting and generic framework to develop almost all ranges of machine learning technologies and its potential is far beyond its current capabilities. Among other characteristics, neural network acts as associative memory obtained from the values structurally stored in synaptic inherent structure. Due to innate complexity of neural networks system, in its practical implementation and maintenance, multifaceted problems are known to be unavoidable. In this paper, we present design and implementation details of GUI software which can be valuable tool to maintain and develop neural networks. It has capability of displaying every state of synaptic weights with network nodal relation in each learning step.

다양한 기계 학습 이론을 총체적으로 구현할 수 있는 포괄적 체제로서의 신경망은 현재 활용되는 기능보다 더 큰 잠재력을 지니고 있다. 신경망의 여러 가지 특성 가운데, 연상 기억 능력을 자연적으로 활용 할 수 있는 신경망 내 시냅스 고유의 구조적 속성이 신경망의 가장 중요한 특성이다. 그러나 이론적 장점에도 불구하고, 네크워크의 복잡성에 기인한 다양한 형태의 피할 수 없는 난제들로 신경망의 실제적 구현 및 유지의 어려움이 잘 알려져있다. 본 논문에서는 인공 신경망의 시냅스 가중치 관리를 효과적으로 관리 할 수 있는 도구를 설계 및 구현 하였다. 개발된 소프트웨어는 다양한 형태의 신경망들의 훈련 단계에서 신경망 내 시냅스의 가중치 변화를 표시해 주는 기능을 갖추고 있다.

Keywords

References

  1. Turing, A. M., “Computing machinery and intelligence,” Mind 50: 433-460, 1950 https://doi.org/10.1093/mind/LIX.236.433
  2. Sipser, M., “Introduction to the Theory of Computation,” $2^nd$ edition, Course Technology, Boston, 2005
  3. Bishop, C. M., “Pattern Recognition and Machine Learning,” Oxford University Press, Oxford, UK, 2007
  4. Hassoun, M. H., “Fundamentals of Artificial Neural Networks,” The MIT Press, Cambridge, MA, 1995
  5. Haykin, S., “Neural Network and Machine Learning,” 3rd edition, Prentice Hall, Upper Saddle River, NJ, 2008
  6. Caudill, M., and Butler, C., “Naturally Intelligent Systems,” The MIT Press, Cambridge, MA, 1992
  7. http://www.mathworks.com/products/neuralnet/
  8. http://sourceforge.net/projects/opencvlibrary/
  9. Bradski, G.; Kaehler, A., “Learning OpenCV: Computer Vision with the OpenCV Library,” O'Reilly, Cambridge, MA, 2008
  10. Misra, M., “Parallel Environments for Implementing Neural Networks,” Neural Computing Surveys, 1:48-60, 1997
  11. Kim, S., and Lee, S., “Phase Dynamics in the Biological Neural Networks,” Physica A, 288:380-396, 2000 https://doi.org/10.1016/S0378-4371(00)00435-0
  12. Szyperski, C., “Component Software: Beyond Object-Oriented Programming. 2nd ed.,” Addison-Wesley Professional, Boston, MA, 2002
  13. Heineman, G. T., and Councill, W. T., “Component-Based Software Engineering: Putting the Pieces Together,” Addison-Wesley Professional, Reading, MA, 2001
  14. Stroustrup, B., “The C++ Programming Language, third Edition,” Addison-Wesley, Reading, MA, 1998
  15. Shakhnarovish, Darrell, and Indyk, “Nearest-Neighbor Methods in Learning and Vision,” The MIT Press, Cambridge, MA, 2005
  16. Kohonen, T., “Self-Organizing Maps”, 2nd edition, Springer-Verlag, Berlin, 1997
  17. Buhmann, M. D., and Ablowitz, M. J., “Radial Basis Functions: Theory and Implementations,” Cambridge University Press, London, 2003
  18. Paulsen, O., and Sejnowski, T. J., “Natural patterns of activity and long-term synaptic plasticity.” Current opinion in neurobiology 10 (2): 172–179. 2000 https://doi.org/10.1016/S0959-4388(00)00076-3
  19. Hinton, G. E., Osindero, S., and Teh, Y., “A fast learning algorithm for deep belief nets,” Neural Computation, 18: 1527-1554.[1], 2006 https://doi.org/10.1162/neco.2006.18.7.1527
  20. Raphael, R., “DARPA Urban Challenge, a C++ based platform for testing Path Planning Algorithms: An application of Game Theory and Neural Networks,” Cornell University, 2007