DOI QR코드

DOI QR Code

Study on Influence of Rotor Temperature Variation on the Performance of Maximum Torque Per Amp Control Strategy

단위 전류당 최대 토크 제어기 성능에 미치는 로터 온도 변화의 영향에 대한 연구

  • Kwon, Chun-Ki (Department of Medical IT Engineering, Soonchunhyang University)
  • 권춘기 (순천향대학교 의료IT공학과)
  • Published : 2009.11.30

Abstract

Rotor temperature variation is a significant issue in the design of induction motor controls. In the literature, numerous studies have mentioned significant performance degradation due to rotor temperature variation unless it is taken into account. However, those studies have mainly focused on field-oriented control in terms of tracking performance. There was little research about the influence of rotor temperature variation on performance particularly in the case of optimal controls such as maximum torque per amp (MTPA) control strategy. This work investigates how to affect the performance of maximum torque per amp (MTPA) control strategy as rotor temperature varies in time. To this end, investigation was carried out in two ways to see whether the objective of MTPA control strategy is achieved regardless of rotor temperature variation. It is to produce a desired torque with the minimum possible stator current at the same time. Laboratory experiment shows that tracking performance and maximum torque per amp condition is significantly affected by rotor temperature variation as rotor temperature varies, thus ending up with performance degradation of MTPA control.

회전자 온도 변화는 유도 전동기 제어기 설계에 있어서 중요한 쟁점이다. 문헌에서, 수많은 연구들이 회전자 온도 변화를 고려하지 않는다면, 그에 기인한 심각한 성능 저하를 언급해왔다. 하지만, 이러한 연구들은 추종 성능 관점에서 주로 Field-oriented 제어기에 초점을 두고 있으며, 단위 전류당 최대 토크 제어기와 같이 최적 제어의 경우에서의 성능에 미치는 회전자 온도 변화의 영향에 대한 연구는 전무하다. 본 연구는 회전자 온도가 시간에 따라 변화함에 따라, 단위 전류당 최대 토크 제어기의 성능에 어떻게 영향을 미치는지를 조사한다. 이를 위해, 두 가지 방법으로 단위 전류당 최대 토크 제어기의 목적이 성취되는 지를 점검한다. 즉, 요구되는 토크를 발생시키면서 동시에 최소 가능한 고정자 전류를 필요로 하는 것이다. 실험실 실험결과는 추종 성능과 단위 전류당 최대 토크 조건이 회전자 온도가 변화함에 따라 심각한 영향을 받으며, 결과적으로 단위 전류당 최대 토크 제어기의 성능저하를 초래함을 보여준다.

Keywords

References

  1. C. Gonzalez, J. Arribas, and D. Prieto, "Optimal Regulation of Electric Drives with Constant Load Torque", IEEE Transaction on Industrial Electronics, Vol. 53, No. 6, pp. 1762-1769, December, 2006. https://doi.org/10.1109/TIE.2006.885121
  2. P. Famouri and J. J. Cathey, "Loss Minimization Control of an Induction Motor Drive", IEEE Transaction on Industry Applications, Vol. 27, No. 1, pp. 32-37, January/February, 1991. https://doi.org/10.1109/28.67529
  3. O. Wasynczuk, S. D. Suhdoff, K. A. Corzine, J. L. Tichenor, P. C. Krause, I. G. Hansen, and L. M. Taylor, "A Maximum Torque Per Ampere Control Strategy for Induction Motor Drives", IEEE Transaction on Energy Conversion, Vol. 13, No. 2, pp. 163-169, June, 1998. https://doi.org/10.1109/60.678980
  4. B. Karanayil, M. F. Rahman, and C. Grantham, "Online Stator and Rotor Resistance Estimation Scheme Using Artificial Neural Networks for Vector Controlled Speed Sensorless Induction Motor Drive", IEEE Transaction on Industrial Electronics, Vol. 54, No. 1, pp. 167-176, February, 2007. https://doi.org/10.1109/TIE.2006.888778
  5. A. B. Proca and A. Keyhani, "Sliding-Mode Flux Observer With Online Rotor Parameter Estimation for Induction Motors", IEEE Transaction on Industrial Electronics, Vol. 54, No. 2, pp. 716-723, April, 2007. https://doi.org/10.1109/TIE.2007.891786
  6. F. Zidani, M. S. Nait-Said, M. E. H. Benbouzid, D. Diallo, and R. Abdessemed, "A Fuzzy Rotor Resistance Updating Scheme for an IFOC Induction Motor Drive", IEEE Power Engineering Review, pp. 47-50, November, 2001. https://doi.org/10.1109/MPER.2001.4311131
  7. S. Halasz, B. T. Huu, and K. Veszpremi, "Rotor Time Constant On-line Identification For Field Oriented AC Drive", Proceedings of the IEEE International Symposium, Vol. 2, pp. 654-659, July, 1995. https://doi.org/10.1109/ISIE.1995.497263
  8. P. C. Krause, O. Wasynczuk, S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, IEEE Press, 2002.
  9. C. Kwon and S. D. Sudhoff, "An Improved Maximum Torque Per Amp Control for Induction Machine Drives", in 20th Annual IEEE Applied Power Electronics Conference and Exposition, pp. 740-745, March, 2005. https://doi.org/10.1109/APEC.2005.1453052
  10. C. Kwon and S. D. Sudhoff, "A Genetic Algorithm Based Induction Machine Characterization Procedure with Application to Maximum Torque Per Amp Control", IEEE Transactions on Energy Conversion, Vol. 21, No. 2, pp. 405-415, June, 2006. https://doi.org/10.1109/TEC.2006.874224
  11. S. D. Sudhoff, D. C. Aliprantis, B. T. Kuhn, and P. L. Chapman, "An Induction Machine Model for Predicting Inverter-Machine Interaction", IEEE Transactions on Energy Conversion, Vol. 17, pp. 203-210, June, 2002. https://doi.org/10.1109/TEC.2002.1009469
  12. S. D. Sudhoff, P. L. Chapman, D. C. Aliprantis, and B. T. Kuhn, "Experimental Characterization of an Advanced Induction Machine Model", IEEE Transactions on Energy Conversion, Vol. 18, pp. 48-56, March, 2003. https://doi.org/10.1109/TEC.2002.808333
  13. P. L. Jansen and R. D. Lorenz, "A Physically Insightful Approach to the Design and Accuracy Assessment of Flux Observer for Field Oriented Induction Machine Drives", IEEE Transactions on Industry Applications, Vol. 30, No. 1, pp. 101-110, January/February, 1994. https://doi.org/10.1109/28.273627
  14. J. Kim, J. Choi, and S. Sul, "Novel Rotor Flux Observer Using Observer Characteristic Function in Complex Vector Space for Field Oriented Induction Motor Drives", IEEE Transactions on Industry Applications, Vol. 38, pp. 1334-1443, September/October, 2002. https://doi.org/10.1109/TIA.2002.802994