Customer Clustering Method Using Repeated Small-sized Clustering to improve the Classifying Ability of Typical Daily Load Profile

일일 대표 부하패턴의 분별력을 높이기 위한 반복적인 소규모 군집화를 이용한 고객 군집화 방법

  • 김영일 (한국전력공사 전력연구원) ;
  • 송재주 (한국전력공사 전력연구원) ;
  • 오도은 (한국전력공사 전력연구원) ;
  • 정남준 (한국전력공사 전력연구원) ;
  • 양일권 (한국전력공사 전력연구원)
  • Published : 2009.11.01

Abstract

Customer clustering method is used to make a TDLP (typical daily load profile) to estimate the quater hourly load profile of non-AMR (Automatic Meter Reading) customer. In this paper, repeated small-sized clustering method is supposed to improve the classifying ability of TDLP. K-means algorithm is well-known clustering technology of data mining. To reduce the local maxima of k-means algorithm, proposed method clusters average load profiles to small-sized clusters and selects the highest error rated cluster and clusters this to small-sized clusters repeatedly to minimize the local maxima.

Keywords

References

  1. David Gerbec, Samo Gasperic, Ivan Smon, and Ferdinand Gubina, 'Allocation of the Load Profiles to Consumers Using Probabilistic Neural Networks', IEEE Transactions on Power Systems, Vol. 20, No. 2, May 2005, pp. 548-555 https://doi.org/10.1109/TPWRS.2005.846236
  2. Vera Figueiredo, Fatima Rodrigues, Zita Vale, and Joaquim Borges Gouveia, 'An Electric Energy Consumer Characterization Framework Based on Data Mining Techniques', IEEE Transactions on Power Systems, Vol. 20, No 2, May 2005, pp. 596-602 https://doi.org/10.1109/TPWRS.2005.846234
  3. 신진호, 김영일, 송재주, 이봉재, 이정일, '지리정보와 검침데이터를 이용한 배전계통 부하분석모델 개발', 대한전기학회 하계학술대회, 2006, 7월, pp. 2124-2125
  4. 하복남, 한용희, 한병성, 이흥호, '배전자동화 투자비대 경제적 효과분석에 관한 연구', 대한전기학회논문지 전력기술부문A, 2003, 제52권 7호, pp. 407-413
  5. 윤상윤, 김재철, '수용가 전력 소비 패턴을 고려한 배전용 변압기 과부하 판정기준', 대한전기학회논문지 전력 기술부문A, 2004, 제53권 9호, pp. 513-520
  6. Jain A. K. and Dubes R.C., 1988. 'Algorithms for Clustering Data,' Englewood Cliffs, NJ: Prentice-Hall
  7. Van Rijsbergen, C. J., 'Information Retrieval, 2nd edition', London: Buttersworth, 1979
  8. Lehmann, E.L., and Joseph P. Romano, 'Testing Statistical Hypotheses, 3rd edition', New York: Springer, 2005