Tracking Detection using Information Granulation-based Fuzzy Radial Basis Function Neural Networks

정보입자기반 퍼지 RBF 뉴럴 네트워크를 이용한 트랙킹 검출

  • Published : 2009.12.01

Abstract

In this paper, we proposed tracking detection methodology using information granulation-based fuzzy radial basis function neural networks (IG-FRBFNN). According to IEC 60112, tracking device is manufactured and utilized for experiment. We consider 12 features that can be used to decide whether tracking phenomenon happened or not. These features are considered by signal processing methods such as filtering, Fast Fourier Transform(FFT) and Wavelet. Such some effective features are used as the inputs of the IG-FRBFNN, the tracking phenomenon is confirmed by using the IG-FRBFNN. The learning of the premise and the consequent part of rules in the IG-FRBFNN is carried out by Fuzzy C-Means (FCM) clustering algorithm and weighted least squares method (WLSE), respectively. Also, Hierarchical Fair Competition-based Parallel Genetic Algorithm (HFC-PGA) is exploited to optimize the IG-FRBFNN. Effective features to be selected and the number of fuzzy rules, the order of polynomial of fuzzy rules, the fuzzification coefficient used in FCM are optimized by the HFC-PGA. Tracking inference engine is implemented by using the LabVIEW and loaded into embedded system. We show the superb performance and feasibility of the tracking detection system through some experiments.

Keywords

References

  1. 지승욱, 이춘하, 윤대희, 송현직, 심광열, 박원주, 이광식, '전압파형을 이용한 트래킹 진전과정 분석방법에 관한 연구', 조명.전기설비학회논문지, Vol. 20, No. 8, pp. 30-35, 2006 https://doi.org/10.5207/JIEIE.2006.20.8.030
  2. 최충석, 송길목, 김형래, 김향곤, 김동욱, 김동우, '트래킹에 의해 열화된 누전차단기 외함의 특성분석', 2002 한국화재 소방학회 추계학술논문, pp. 47-52
  3. 최원은, 조기선, 이승우, '고분자 절연재료의 트랙킹 현상에 관한 연구', 전기학회논문지, Vol. 34, No. 12, pp. 457-463, 1985
  4. 지승욱, 이상훈, 김충년, 이춘하, 이광식, '트래킹 검출을 위한 주파수-시간 분석(분할-FFT)', 대한전기학회논문지, Vol. 53c, No. 10, pp. 530-538, 2004
  5. 최대원, 이오걸, 김석순, '신경회로망을 이용한 옥내배선의 트랙킹 검지 기법', 대한화재 소방학회지, Vol. 9, No. 1, pp. 3-9, 1995
  6. 최정내, 오성권, 김현기, 'FCM 기반 퍼지 뉴럴 네트워크의 진화론적 최적화', 대한전기학회지, Vol. 57, No. 3, pp. 466-472, 2008
  7. 최정내, 김현기, 오성권, 'PSO를 이용한 FCM 기반 RBF 뉴럴네트워크의 최적화', 대한전기학회지, Vol. 57, No. 1, pp.2108-2116, 2008
  8. IEC 60112, 'Method for the determination of the proof and the comparative tracking indices of solid insulating materials', 2004
  9. W. Pderyca and G. Vukovich, 'Granular neural networks,' Neurocomputing, Vol. 36, pp. 205-224, 2001 https://doi.org/10.1016/S0925-2312(00)00342-8
  10. P. R. Krishnaiah and L. N. Kanal, editors. Classification, pattern recognition, and reduction of dimensionality, Vol. 2 of Handbook of Statistics. North-Holland, Amsterdam, 1982
  11. S.-K. Oh and W. Pedrycz, 'Identification of Fuzzy Systems by means of an Auto- Tuning Algorithm and Its Application to Nonlinear Systems,' Fuzzy Sets and Syst., Vol. 115, No.2, pp. 205-230, 2000 https://doi.org/10.1016/S0165-0114(98)00174-2
  12. L. X. Wang, J. M. Mendel, 'Generating fuzzy rules from numerical data with applications,' IEEE Trans. Systems, Man, Cybern., Vol. 22, No.6, pp. 1414-1427, 1992 https://doi.org/10.1109/21.199466
  13. J. S. R. Jang, 'ANFIS: Adaptive-Network-Based Fuzzy Inference System,' IEEE Trans. System, Man, and Cybern., Vol. 23, No.3, pp. 665-685, 1993 https://doi.org/10.1109/21.256541
  14. L. P. Maguire, B. Roche, T. M. McGinnity, L. J. McDaid, 'Predicting a chaotic time series using a fuzzy neural network,' Information Sciences, Vol. 112, pp. 125-136, 1998 https://doi.org/10.1016/S0020-0255(98)10026-9
  15. A. Staiano. J. Tagliaferri, W. Pedrycz, 'Improving RBF networks performance in regression tasks by means of a supervised fuzzy clusering'Automatic structure and parameter,' Neurocomputing, Vol. 69, pp. 1570-1581, 2006 https://doi.org/10.1016/j.neucom.2005.06.014
  16. J.J. Hu, E.D. Goodman, The Hierarchical Fair competition (HFC) Model for Parallel Evolutionary Algortihms, CEC 2002 - Proceedings of the 2002 congress on Evolutionary Computation, IEEE, Honolulu, Hawaii (2002) 45-94 https://doi.org/10.1109/CEC.2002.1006208
  17. J.J. Hu, E.D. Goodman, K. S. S대, M. Pei, Adaptive Hierarchical Fair competition (AHFC) Model for Parallel Evolutionary Algorithms, GECCO 2002 - Genetic and Evolutionary Computation Conference (2002) 772-779
  18. J.N. Choi, S.K. Oh, W. Pedrycz, Structural and parametric design of fuzzy inference systems using hierarchical fair competition -based parallel genetic algorithm and infonnation granulation, International Journal of Approximate Reasoning 49 (2008) 631-648 https://doi.org/10.1016/j.ijar.2008.06.006