References
- Arm, J. P. (2004). Leukotriene generation and clinical implications. Allergy Asthma. Proc. 25, 37
- Crespi Perellino, N., Guicciardi, A., Minghetti, A. and Speroni, E. (1988). Comparison of biological activity induced by Ailanthus altissima plant or cell cultures extracts. Pharmacol. Res. Commun. 5, 45
- De Feo, V. Martino, L. D., Santoro, A., Leone, A., Pizza, C., Franceschelli, S. and Pascale, M. (2005). Antiproliferative effects of tree-of-heaven (Ailanthus altissima Swingle). Phytother. Res. 19, 226 https://doi.org/10.1002/ptr.1670
- Fiorucci, S., Meli, R., Bucci, M. and Cirino, G. (2001). Dual inhibitors of cyclooxygenase and 5-lipoxygenase. Biochem. Pharmacol. 62, 1433 https://doi.org/10.1016/S0006-2952(01)00747-X
- Jin, M. H., Yook, J. M., Lee, E. K., Lin, C. X., Quan, Z., Son, K. H., Bae, K. H., Kim, H. P., Kang, S. S. and Chang, H. W. (2006). Anti-inflammatory activity of Ailanthus altissima in ovalbumin-induced lung inflammation. Biol. Pharm. Bull. 29, 884 https://doi.org/10.1248/bpb.29.884
- Kim, J. S., Kim, J. C., Shim, S. H., Lee, E. J., Jin, W., Bae, K., Son, K. H., Kim, H. P., Kang, S. S. and Chang, H. W. (2006). Chemical constituents of the root of Dystaenia takeshimana and their anti-inflammatory activity. Arch. Pharm. Res. 29, 617 https://doi.org/10.1007/BF02968244
- Kubota, K., Fukamiya, N. Tokuda, H., Nishino, H., Tagahara, K., Lee, K. H. and Okano, M. (1997). Quassinoids as inhibitors of Epstein-Barr virus early antigen activation. Cancer Lett. 113, 165 https://doi.org/10.1016/S0304-3835(97)04607-7
- Lee, S. H., Son, M. J., Ju, H. K., Lin, C. X., Moon, T. C., Choi, H. G., Son, J. K. and Chang, H. W. (2004). Dual inhibition of cyclooxygenases-2 and 5-lipoxygenase by deoxypodophyllotoxin in mouse bone marrow-derived mast cells. Biol. Pharm. Bull. 27, 786 https://doi.org/10.1248/bpb.27.786
- Makino, H., Ashida, Y., Saijo, T., Kuriki, H., Terao, S. and Maki, Y. (1986). Role of leukotrienes in rat reversed passive Arthus pleurisy and the effect of AA-861, a 5-lipoxygenase inhibitor. Int. Arch. Allergy Appl. Immunol. 79, 38 https://doi.org/10.1159/000233939
- Moon, T. C., Murakami, M., Kudo, I., Son, K. H., Kim, H. P., Kang, S. S. and Chang, H. W. (1999). A new class of COX-2 inhibitor, rutaecarpine from Evodia rutaecarpa. Inflamm. Res. 48, 621 https://doi.org/10.1007/s000110050512
- Murakami, M., Austen, K. F. and Arm, J. P. (1995). The immediate phase of c-kit ligand stimulation of mouse bone marrow-derived mast cells elicits rapid leukotriene C4 generation through posttranslational activation of cytosolic phospholipase A2 and 5-lipoxygenase. J. Exp. Med. 182, 197 https://doi.org/10.1084/jem.182.1.197
- Murakami, M., Kambe, T., Shimbara, S. and Kudo, I. (1999). Functional coupling between various phospholipase A2s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. J. Biol. Chem. 274, 3103 https://doi.org/10.1074/jbc.274.5.3103
- Murakami, M., Matsumoto, R., Austen, K. F. and Arm, J. P. (1994). Prostaglandin endoperoxide synthase-1 and -2 couple to different transmembrane stimuli to generate prostaglandin D2 in mouse bone marrow-derived mast cells. J. Biol. Chem. 269, 22269
- O'Neill, M. J., Bray, D. H., Boardman, P., Phillipson, J. D., Warhurst, D. C., Peters, W. and Suffness, M. (1986). Plants as sources of antimalarial drugs: in vitro antimalarial activities of some quassinoids. Agents Chemother. 30, 101 https://doi.org/10.1128/AAC.30.1.101
- Ohno, N., Fukamiya, N., Okano, M., Tagahara, K. and Lee, K. H. (1997). Synthesis of cytotoxic fluorinated quassinoids. Bioorg. Med. Chem. 5, 1489 https://doi.org/10.1016/S0968-0896(97)00095-3
- Okunade, A. L., Bikoff, R. E., Casper, S. J., Oksman, A., Goldber, D. E. and Lewis, W. H. (2003). Antiplasmodial activity of extracts and quassinoids isolated from seedlings of Ailanthus altissima (Simaroubaceae). Phytother. Res. 17, 675 https://doi.org/10.1002/ptr.1336
- Pistelli, L., Bertoli, A., Bilia, A.R. and Morelli, I. (1996). Minor constituents from Bupleurum fruticosumroots. Phytochemistry 41, 1579 https://doi.org/10.1016/0031-9422(95)00749-0
- Rahman, S., Fukamiya, N., Okano, M., Tagahara, K. and Lee, K. H. (1997). Anti-tuberculosis activity of quassinoids. Chem. Pharm. Bull. (Tokyo). 45, 1527 https://doi.org/10.1248/cpb.45.1527
- Raso, G.M., Meli, R., Di Carlo, G. Pacilio, M. and Di Carlo, R. (2001). Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A.1. Life Sci. 68, 921 https://doi.org/10.1016/S0024-3205(00)00999-1
- Seibert, K., Zhang, Y., Leahy, K., Hauser, S., Masferrer, J., Perkins, W., Lee, L. and Isakson, P. (1994). Pharmacological and biochemical demonstration of the role of cyclooxygenase-2 in inflammation and pain. Proc. Natl. Acad. Sci. U. S. A., 91, 12013 https://doi.org/10.1073/pnas.91.25.12013
- Son, J. K., Son, M. J., Lee, E. K., Moon, T. C., Son, K. H., Kim, C. H., Kim, H. P., Kang, S. S. and Chang, H. W. (2005). Ginkgetin, a Biflavone from Ginko biloba leaves, inhibits cyclooxygenases-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Biol. Pharm. Bull. 28, 2181 https://doi.org/10.1248/bpb.28.2181
- Son, M. J., Moon, T. C., Lee, E. K., Son, K. H., Kim, H. P., Kang, S. S., Son, J. K., Lee, S. H. and Chang, H. W. (2006). Naturally occurring biflavonoid, ochnaflavone, inhibits cyclooxygenases-2 and 5-lipoxygenase in mouse bone marrowderived mast cells. Arch. Pharm. Res. 29, 282 https://doi.org/10.1007/BF02968571
- Tamura, S., Fukamiya,N., Okano, M., Koyama, J., Koike, K., Tokuda, H., Aoi, W., Takayasu, J., Kuchide, M. and Nishino, H. (2003). Three new quassinoids, ailantinol E, F, and G, from Ailanthus altissima. Chem. Pharm. Bull. (Tokyo). 51, 385 https://doi.org/10.1248/cpb.51.385
- Tamura, S., Fukamiya, N., Okano, M., Tokuda, H., Aoi, W., Mukainaka, T., Nishino, H., Tagahara, K. and Koike, K. (2002). Cancer chemopreventive effect of quassinoid derivatives. Introduction of side chain to shinjulactone C for enhancement of inhibitory effect on Epstein-Barr virus activation. Cancer Lett. 185, 47 https://doi.org/10.1016/S0304-3835(02)00302-6
- Thuong, P. T., Jin, W., Lee, J., Seong, R., Lee, Y. M., Seong, Y., Song, K. and Bae, K. (2005). Inhibitory effect on TNF-alphainduced IL-8 production in the HT29 cell of constituents from the leaf and stem of Weigelasubsessilis. Arch. Pharm. Res. 28, 1135 https://doi.org/10.1007/BF02972975
Cited by
- Flavonoids from the Leaves of Ailanthus altissima Swingle and their Antioxidant Activity vol.56, pp.4, 2013, https://doi.org/10.3839/jabc.2013.034
- Simaroubaceae family: botany, chemical composition and biological activities vol.24, pp.4, 2014, https://doi.org/10.1016/j.bjp.2014.07.021
- Modeling Natural Anti-Inflammatory Compounds by Molecular Topology vol.12, pp.12, 2011, https://doi.org/10.3390/ijms12129481
- Anti-Inflammatory Activity of Constituents Isolated from Ulmus davidiana var. japonica vol.18, pp.3, 2010, https://doi.org/10.4062/biomolther.2010.18.3.321
- Antiasthmatic Activity of Luteolin-7-O-glucoside from Ailanthus altissima through the Downregulation of T Helper 2 Cytokine Expression and Inhibition of Prostaglandin E2 Production in an Ovalbumin-Induced Asthma Model vol.32, pp.9, 2009, https://doi.org/10.1248/bpb.32.1500
- Polyacetylene Compound from Cirsium japonicum var. ussuriense Inhibits the LPS-Induced Inflammatory Reaction via Suppression of NF-κB Activity in RAW 264.7 Cells vol.19, pp.1, 2011, https://doi.org/10.4062/biomolther.2011.19.1.097
- Neuroadaptations Involved in Long-Term Exposure to ADHD Pharmacotherapies: Alterations That Support Dependence Liability of These Medications vol.19, pp.1, 2011, https://doi.org/10.4062/biomolther.2011.19.1.009
- Phytochemical investigation and acetylcholinesterase inhibitory activity of bark of Hymenodictyon orixense vol.32, pp.24, 2009, https://doi.org/10.1080/14786419.2017.1389930
- Antioxidative and Potentially Anti-inflammatory Activity of Phenolics from Lovage Leaves Levisticum officinale Koch Elicited with Jasmonic Acid and Yeast Extract vol.24, pp.7, 2009, https://doi.org/10.3390/molecules24071441