DOI QR코드

DOI QR Code

Anti-inflammatory Compounds from the Leaves of Ailanthus altissima Meihua JIN

  • Published : 2009.01.31

Abstract

In our ongoing search for biological components from the Korea endemic plants, the MeOH extract of Ailanthus altissima leaves (Simaroubaceae) showed cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) dual inhibitory activity by assessing their effects on the production of prostaglandin $D_2$ ($PGD_2$) and leukotriene $C_4$ ($LTC_4$) in mouse bone marrow-derived mast cells (BMMCs). In further study, eight compounds, squalene (1), ${\beta}$-sitosterol (2), scopoletin (3), quercetin (4), luteolin (5), astragalin (6), scopolin (7), and daucosterol (8) were isolated, the chemical structures were elucidated on the basis of physicochemical and spectroscopic data and by comparison with those of published literatures. Among the compounds, 2, 4, and 5 strongly inhibited both the COX-2-dependent PGD2 generation with $IC_{50}$ values of 2.6, 7.3 and 2.5 ${\mu}M$, respectively and the generation of $LTC_4$ in the 5-LOX dependent phase with $IC_{50}$ values of 2.0, 5.1 and 1.8 ${\mu}M$, respectively, which suggest that the anti-inflammatory activity of A. altissima might occur in part via the inhibition of both $PGD_2$ and $LTC_4$ generation by 2, 4 and 5.

Keywords

References

  1. Arm, J. P. (2004). Leukotriene generation and clinical implications. Allergy Asthma. Proc. 25, 37
  2. Crespi Perellino, N., Guicciardi, A., Minghetti, A. and Speroni, E. (1988). Comparison of biological activity induced by Ailanthus altissima plant or cell cultures extracts. Pharmacol. Res. Commun. 5, 45
  3. De Feo, V. Martino, L. D., Santoro, A., Leone, A., Pizza, C., Franceschelli, S. and Pascale, M. (2005). Antiproliferative effects of tree-of-heaven (Ailanthus altissima Swingle). Phytother. Res. 19, 226 https://doi.org/10.1002/ptr.1670
  4. Fiorucci, S., Meli, R., Bucci, M. and Cirino, G. (2001). Dual inhibitors of cyclooxygenase and 5-lipoxygenase. Biochem. Pharmacol. 62, 1433 https://doi.org/10.1016/S0006-2952(01)00747-X
  5. Jin, M. H., Yook, J. M., Lee, E. K., Lin, C. X., Quan, Z., Son, K. H., Bae, K. H., Kim, H. P., Kang, S. S. and Chang, H. W. (2006). Anti-inflammatory activity of Ailanthus altissima in ovalbumin-induced lung inflammation. Biol. Pharm. Bull. 29, 884 https://doi.org/10.1248/bpb.29.884
  6. Kim, J. S., Kim, J. C., Shim, S. H., Lee, E. J., Jin, W., Bae, K., Son, K. H., Kim, H. P., Kang, S. S. and Chang, H. W. (2006). Chemical constituents of the root of Dystaenia takeshimana and their anti-inflammatory activity. Arch. Pharm. Res. 29, 617 https://doi.org/10.1007/BF02968244
  7. Kubota, K., Fukamiya, N. Tokuda, H., Nishino, H., Tagahara, K., Lee, K. H. and Okano, M. (1997). Quassinoids as inhibitors of Epstein-Barr virus early antigen activation. Cancer Lett. 113, 165 https://doi.org/10.1016/S0304-3835(97)04607-7
  8. Lee, S. H., Son, M. J., Ju, H. K., Lin, C. X., Moon, T. C., Choi, H. G., Son, J. K. and Chang, H. W. (2004). Dual inhibition of cyclooxygenases-2 and 5-lipoxygenase by deoxypodophyllotoxin in mouse bone marrow-derived mast cells. Biol. Pharm. Bull. 27, 786 https://doi.org/10.1248/bpb.27.786
  9. Makino, H., Ashida, Y., Saijo, T., Kuriki, H., Terao, S. and Maki, Y. (1986). Role of leukotrienes in rat reversed passive Arthus pleurisy and the effect of AA-861, a 5-lipoxygenase inhibitor. Int. Arch. Allergy Appl. Immunol. 79, 38 https://doi.org/10.1159/000233939
  10. Moon, T. C., Murakami, M., Kudo, I., Son, K. H., Kim, H. P., Kang, S. S. and Chang, H. W. (1999). A new class of COX-2 inhibitor, rutaecarpine from Evodia rutaecarpa. Inflamm. Res. 48, 621 https://doi.org/10.1007/s000110050512
  11. Murakami, M., Austen, K. F. and Arm, J. P. (1995). The immediate phase of c-kit ligand stimulation of mouse bone marrow-derived mast cells elicits rapid leukotriene C4 generation through posttranslational activation of cytosolic phospholipase A2 and 5-lipoxygenase. J. Exp. Med. 182, 197 https://doi.org/10.1084/jem.182.1.197
  12. Murakami, M., Kambe, T., Shimbara, S. and Kudo, I. (1999). Functional coupling between various phospholipase A2s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. J. Biol. Chem. 274, 3103 https://doi.org/10.1074/jbc.274.5.3103
  13. Murakami, M., Matsumoto, R., Austen, K. F. and Arm, J. P. (1994). Prostaglandin endoperoxide synthase-1 and -2 couple to different transmembrane stimuli to generate prostaglandin D2 in mouse bone marrow-derived mast cells. J. Biol. Chem. 269, 22269
  14. O'Neill, M. J., Bray, D. H., Boardman, P., Phillipson, J. D., Warhurst, D. C., Peters, W. and Suffness, M. (1986). Plants as sources of antimalarial drugs: in vitro antimalarial activities of some quassinoids. Agents Chemother. 30, 101 https://doi.org/10.1128/AAC.30.1.101
  15. Ohno, N., Fukamiya, N., Okano, M., Tagahara, K. and Lee, K. H. (1997). Synthesis of cytotoxic fluorinated quassinoids. Bioorg. Med. Chem. 5, 1489 https://doi.org/10.1016/S0968-0896(97)00095-3
  16. Okunade, A. L., Bikoff, R. E., Casper, S. J., Oksman, A., Goldber, D. E. and Lewis, W. H. (2003). Antiplasmodial activity of extracts and quassinoids isolated from seedlings of Ailanthus altissima (Simaroubaceae). Phytother. Res. 17, 675 https://doi.org/10.1002/ptr.1336
  17. Pistelli, L., Bertoli, A., Bilia, A.R. and Morelli, I. (1996). Minor constituents from Bupleurum fruticosumroots. Phytochemistry 41, 1579 https://doi.org/10.1016/0031-9422(95)00749-0
  18. Rahman, S., Fukamiya, N., Okano, M., Tagahara, K. and Lee, K. H. (1997). Anti-tuberculosis activity of quassinoids. Chem. Pharm. Bull. (Tokyo). 45, 1527 https://doi.org/10.1248/cpb.45.1527
  19. Raso, G.M., Meli, R., Di Carlo, G. Pacilio, M. and Di Carlo, R. (2001). Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A.1. Life Sci. 68, 921 https://doi.org/10.1016/S0024-3205(00)00999-1
  20. Seibert, K., Zhang, Y., Leahy, K., Hauser, S., Masferrer, J., Perkins, W., Lee, L. and Isakson, P. (1994). Pharmacological and biochemical demonstration of the role of cyclooxygenase-2 in inflammation and pain. Proc. Natl. Acad. Sci. U. S. A., 91, 12013 https://doi.org/10.1073/pnas.91.25.12013
  21. Son, J. K., Son, M. J., Lee, E. K., Moon, T. C., Son, K. H., Kim, C. H., Kim, H. P., Kang, S. S. and Chang, H. W. (2005). Ginkgetin, a Biflavone from Ginko biloba leaves, inhibits cyclooxygenases-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Biol. Pharm. Bull. 28, 2181 https://doi.org/10.1248/bpb.28.2181
  22. Son, M. J., Moon, T. C., Lee, E. K., Son, K. H., Kim, H. P., Kang, S. S., Son, J. K., Lee, S. H. and Chang, H. W. (2006). Naturally occurring biflavonoid, ochnaflavone, inhibits cyclooxygenases-2 and 5-lipoxygenase in mouse bone marrowderived mast cells. Arch. Pharm. Res. 29, 282 https://doi.org/10.1007/BF02968571
  23. Tamura, S., Fukamiya,N., Okano, M., Koyama, J., Koike, K., Tokuda, H., Aoi, W., Takayasu, J., Kuchide, M. and Nishino, H. (2003). Three new quassinoids, ailantinol E, F, and G, from Ailanthus altissima. Chem. Pharm. Bull. (Tokyo). 51, 385 https://doi.org/10.1248/cpb.51.385
  24. Tamura, S., Fukamiya, N., Okano, M., Tokuda, H., Aoi, W., Mukainaka, T., Nishino, H., Tagahara, K. and Koike, K. (2002). Cancer chemopreventive effect of quassinoid derivatives. Introduction of side chain to shinjulactone C for enhancement of inhibitory effect on Epstein-Barr virus activation. Cancer Lett. 185, 47 https://doi.org/10.1016/S0304-3835(02)00302-6
  25. Thuong, P. T., Jin, W., Lee, J., Seong, R., Lee, Y. M., Seong, Y., Song, K. and Bae, K. (2005). Inhibitory effect on TNF-alphainduced IL-8 production in the HT29 cell of constituents from the leaf and stem of Weigelasubsessilis. Arch. Pharm. Res. 28, 1135 https://doi.org/10.1007/BF02972975

Cited by

  1. Flavonoids from the Leaves of Ailanthus altissima Swingle and their Antioxidant Activity vol.56, pp.4, 2013, https://doi.org/10.3839/jabc.2013.034
  2. Simaroubaceae family: botany, chemical composition and biological activities vol.24, pp.4, 2014, https://doi.org/10.1016/j.bjp.2014.07.021
  3. Modeling Natural Anti-Inflammatory Compounds by Molecular Topology vol.12, pp.12, 2011, https://doi.org/10.3390/ijms12129481
  4. Anti-Inflammatory Activity of Constituents Isolated from Ulmus davidiana var. japonica vol.18, pp.3, 2010, https://doi.org/10.4062/biomolther.2010.18.3.321
  5. Antiasthmatic Activity of Luteolin-7-O-glucoside from Ailanthus altissima through the Downregulation of T Helper 2 Cytokine Expression and Inhibition of Prostaglandin E2 Production in an Ovalbumin-Induced Asthma Model vol.32, pp.9, 2009, https://doi.org/10.1248/bpb.32.1500
  6. Polyacetylene Compound from Cirsium japonicum var. ussuriense Inhibits the LPS-Induced Inflammatory Reaction via Suppression of NF-κB Activity in RAW 264.7 Cells vol.19, pp.1, 2011, https://doi.org/10.4062/biomolther.2011.19.1.097
  7. Neuroadaptations Involved in Long-Term Exposure to ADHD Pharmacotherapies: Alterations That Support Dependence Liability of These Medications vol.19, pp.1, 2011, https://doi.org/10.4062/biomolther.2011.19.1.009
  8. Phytochemical investigation and acetylcholinesterase inhibitory activity of bark of Hymenodictyon orixense vol.32, pp.24, 2009, https://doi.org/10.1080/14786419.2017.1389930
  9. Antioxidative and Potentially Anti-inflammatory Activity of Phenolics from Lovage Leaves Levisticum officinale Koch Elicited with Jasmonic Acid and Yeast Extract vol.24, pp.7, 2009, https://doi.org/10.3390/molecules24071441