DOI QR코드

DOI QR Code

Schizandra chinensis Alkaloids Inhibit Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglial Cells

  • Choi, Min-Sik (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kwon, Kyung-Ja (Center for Geriatric Neuroscience Research, IBST, and School of Medicine, Konkuk University) ;
  • Jeon, Se-Jin (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Go, Hyo-Sang (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Ki-Chan (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Ryu, Jae-Ryun (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Lee, Jong-Min (Center for Geriatric Neuroscience Research, IBST, and School of Medicine, Konkuk University) ;
  • Han, Seol-Heui (Center for Geriatric Neuroscience Research, IBST, and School of Medicine, Konkuk University) ;
  • Cheong, Jae-Hoon (Department of Pharmacy, Sahmyook University) ;
  • Ryu, Jong-Hoon (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Bae, Ki-Hwan (College of Pharmacy, Chungnam University) ;
  • Shin, Chan-Young (Center for Geriatric Neuroscience Research, IBST, and School of Medicine, Konkuk University) ;
  • Ko, Kwang-Ho (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Published : 2009.01.31

Abstract

Schizandra chinensis (S. chinensis) exhibits a harmless, 'adaptogen-type' effect leading to improvements in mental performance and learning efficacy in brain. Activated microglia contributes to neuronal injury by releasing neurotoxic products, which make it important to regulate microglial activation to prevent further cytological as well as functional brain damage. However, the effect of S. chinensis on microglial activation has not been examined yet. We have investigated the effects of four compounds (Gomisin A, Gomisin N, Schizandrin and Schizandrol A) from S. chinensis on lipopolysaccharide (LPS)-induced microglial activation. In this study, BV2 microglial cells were activated with LPS and the microglial activation was assessed by up-regulation of activation markers such as nitric oxide (NO), reactive oxygen species (ROS), and matrix metalloproteinase-9 (MMP-9). The results showed that all four compounds significantly reduced the intracellular level of ROS, the release of NO and MMP-9 as well as LPS-induced phosphorylation of ERK1/2. These results strongly suggested that S. chinensis may be useful to modulate inflammation-mediated brain damage by regulating microglial activation.

Keywords

References

  1. Banati, R. B., Daniel, S. E. and Blunt, S. B. (1998). Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson's disease. Mov. Disord. 13, 221-227 https://doi.org/10.1002/mds.870130205
  2. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A. and Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87, 1620-1624 https://doi.org/10.1073/pnas.87.4.1620
  3. Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R. and Bistoni, F. (1990). Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J. Neuroimmunol. 27, 229-237 https://doi.org/10.1016/0165-5728(90)90073-V
  4. Bocchini, V., Mazzolla, R., Barluzzi, R., Blasi, E., Sick, P. and Kettenmann, H. (1992). An immortalized cell line expresses properties of activated microglial cells. J. Neurosci. Res. 31, 616-621 https://doi.org/10.1002/jnr.490310405
  5. Bornemann, K.D., Wiederhold, K.H., Pauli, C., Ermini, F., Stalder, M., Schnell, L., Sommer, B., Jucker, M. and Staufenbiel, M. (2001). Abeta-induced inflammatory processes in microglia cells of APP23 transgenic mice. Am. J. Pathol. 158, 63-73 https://doi.org/10.1016/S0002-9440(10)63945-4
  6. Bruhwyler, J., Chleide, E., Liegeois, J.F. and Carreer, F. (1993). Nitric oxide: a new messenger in the brain. Neurosci. Biobehav. Rev. 17, 373-384 https://doi.org/10.1016/S0149-7634(05)80114-9
  7. Chang, L. and Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature. 410, 37-40 https://doi.org/10.1038/35065000
  8. Choi, J. J. and Kim, W. K. (1998). Potentiated glucose deprivation-induced death of astrocytes after induction of iNOS. J. Neurosci. Res. 54, 870-875 https://doi.org/10.1002/(SICI)1097-4547(19981215)54:6<870::AID-JNR15>3.0.CO;2-3
  9. Cuzner, M. L. and Opdenakker, G. (1999). Plasminogen activators and matrix metalloproteases, mediators of extracellular proteolysis in inflammatory demyelination of the central nervous system. J. Neuroimmunol. 94, 1-14 https://doi.org/10.1016/S0165-5728(98)00241-0
  10. Darley-Usmar, V., Wiseman, H. and Halliwell, B. (1995). Nitric oxide and oxygen radicals: a question of balance. FEBS. Lett. 369, 131-135 https://doi.org/10.1016/0014-5793(95)00764-Z
  11. del Zoppo, G. J., Milner, R., Mabuchi, T., Hung, S., Wang, X., Berg, G. I. and Koziol, J. A. (2007). Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke. 38, 646-651 https://doi.org/10.1161/01.STR.0000254477.34231.cb
  12. Fiebich, B. L., Grozdeva, M., Hess, S., Hull, M., Danesch, U., Bodensieck, A. and Bauer, R. (2005). Petasites hybridus extracts in vitro inhibit COX-2 and PGE2 release by direct interaction with the enzyme and by preventing p42/44 MAP kinase activation in rat primary microglial cells. Planta. Med. 71, 12-19 https://doi.org/10.1055/s-2005-837744
  13. Gijbels, K., Galardy, R. E. and Steinman, L. (1994). Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteases. J. Clin. Invest. 94, 2177-2182 https://doi.org/10.1172/JCI117578
  14. Gloire, G., Legrand-Poels, S. and Piette, J. (2006). NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem. Pharmacol. 72, 1493-1505 https://doi.org/10.1016/j.bcp.2006.04.011
  15. Gonzalez-Scarano, F. and Baltuch, G. (1999). Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22, 219-240 https://doi.org/10.1146/annurev.neuro.22.1.219
  16. Gottschall, P. E., Yu, X. and Bing, B. (1995). Increased production of gelatinase B (matrix metalloproteinase-9) and interleukin-6 by activated rat microglia in culture. J. Neurosci. Res. 42, 335-342 https://doi.org/10.1002/jnr.490420307
  17. Green, T. R. and Pratt, K. L. (1990). Detection and isolation of the NADPH-binding protein of the NADPH:O2 oxidoreductase complex of human neutrophils. J. Biol. Chem. 265, 19324-19329
  18. Guo, L. Y., Hung, T. M., Bae, K. H., Shin, E. M., Zhou, H. Y., Hong, Y. N., Kang, S. S., Kim, H. P. and Kim, Y. S. (2008) Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. Eur. J. Pharmacol. 591, 293-299 https://doi.org/10.1016/j.ejphar.2008.06.074
  19. Hensley, K., Hall, N., Subramaniam, R., Cole, P., Harris, M., Aksenov, M., Aksenova, M., Gabbita, S. P., Wu, J. F., Carney, J. M., Lovell, M., William., Markesbery R., Allan Butterfield, D. (1995). Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation. J. Neurochem. 65, 2146-2156 https://doi.org/10.1046/j.1471-4159.1995.65052146.x
  20. Hewett, S. J., Csernansky, C. A. and Choi, D. W. (1994). Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS. Neuron. 13, 487-494 https://doi.org/10.1016/0896-6273(94)90362-X
  21. Hung, T. M., Na, M., Min, B. S., Ngoc, T. M., Lee, I., Zhang, X. and Bae, K. (2007). Acetylcholinesterase inhibitory effect of lignans isolated from Schizandra chinensis. Arch. Pharm. Res. 30, 685-690 https://doi.org/10.1007/BF02977628
  22. Jung, K., Ha, E., Uhm, Y., Park, H., Kim, M.J., Kim, H., Baik, H., Hong, M., Yang, J. and Yim, S. V. (2007). Suppressive effect by Hizikia fusiforme on the production of tumor necrosis factor in BV2 murine microglial cells. Neurol. Res. 29, 88-92 https://doi.org/10.1179/016164107X172383
  23. Kieseier, B.C., Seifert, T., Giovannoni, G. and Hartung, H.P. (1999). Matrix metalloproteinases in inflammatory demyelination: targets for treatment. Neurology. 53, 20-25 https://doi.org/10.1212/WNL.53.1.20
  24. Kim, S. D., Yang, S. I., Kim, H. C., Shin, C. Y. and Ko, K. H. (2007). Inhibition of GSK-3beta mediates expression of MMP-9 through ERK1/2 activation and translocation of NF-kappaB in rat primary astrocyte. Brain. Res. 1186, 12-20 https://doi.org/10.1016/j.brainres.2007.10.018
  25. Lau, F. C., Bielinski, D. F. and Joseph, J. A. (2007). Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. J. Neurosci. Res. 85, 1010-1017 https://doi.org/10.1002/jnr.21205
  26. Lee, W. J., Shin, C. Y., Yoo, B. K., Ryu, J. R., Choi, E. Y., Cheong, J. H., Ryu, J. H. and Ko, K. H. (2003). Induction of matrix metalloproteinase-9 (MMP-9) in lipopolysaccharidestimulated primary astrocytes is mediated by extracellular signal-regulated protein kinase 1/2 (Erk1/2). Glia. 41, 15-24 https://doi.org/10.1002/glia.10131
  27. Liang, Y. C., Huang, Y. T., Tsai, S. H., Lin-Shiau, S. Y., Chen, C. F. and Lin, J. K. (1999). Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis. 20, 1945-1952 https://doi.org/10.1093/carcin/20.10.1945
  28. Lin, S. J., Shyue, S. K., Liu, P. L., Chen, Y. H., Ku, H. H., Chen, J. W., Tam, K. B. and Chen, Y. L. (2004). Adenovirus-mediated overexpression of catalase attenuates oxLDL-induced apoptosis in human aortic endothelial cells via AP-1 and C-Jun N-terminal kinase/extracellular signal-regulated kinase mitogen-activated protein kinase pathways. J. Mol. Cell. Cardiol. 36, 129-139 https://doi.org/10.1016/j.yjmcc.2003.10.011
  29. Lu, K., Cho, C. L., Liang, C. L., Chen, S. D., Liliang, P. C., Wang, S. Y. and Chen, H. J. (2007). Inhibition of the MEK/ERK pathway reduces microglial activation and interleukin-1-beta expression in spinal cord ischemia/reperfusion injury in rats. J. Thorac. Cardiovasc. Surg. 133, 934-941 https://doi.org/10.1016/j.jtcvs.2006.11.038
  30. McGeer, P. L. and McGeer, E. G. (1995). The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain. Res. Brain. Res. Rev. 21, 195-218 https://doi.org/10.1016/0165-0173(95)00011-9
  31. McGeer, P. L. and McGeer, E. G. (2004a). Inflammation and neurodegeneration in Parkinson's disease. Parkinsonism. Relat. Disord. 10, 3-7 https://doi.org/10.1016/j.parkreldis.2004.01.005
  32. McGeer, P. L. and McGeer, E. G. (2004b). Inflammation and the degenerative diseases of aging. Ann. N. Y. Acad. Sci. 1035, 104-116 https://doi.org/10.1196/annals.1332.007
  33. Minghetti, L. and Levi, G. (1998). Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog. Neurobiol. 54, 99-125 https://doi.org/10.1016/S0301-0082(97)00052-X
  34. Murphy, G. M., Jr., Yang, L. and Cordell, B. (1998). Macrophage colony-stimulating factor augments beta-amyloid-induced interleukin-1, interleukin-6, and nitric oxide production by microglial cells. J. Biol. Chem. 273, 20967-20971 https://doi.org/10.1074/jbc.273.33.20967
  35. Nakashima, M. N., Ajiki, K., Nakashima, K. and Takahashi, M. (2003). Possible role of nitric oxide in anxiety following transient cerebral ischemia in mice. J. Pharmacol. Sci. 91, 47-52 https://doi.org/10.1254/jphs.91.47
  36. Ohkura, Y., Mizoguchi, Y., Morisawa, S., Takeda, S., Aburada, M. and Hosoya, E. (1990). Effect of gomisin A (TJN-101) on the arachidonic acid cascade in macrophages. Jpn. J. Pharmacol. 52, 331-336 https://doi.org/10.1254/jjp.52.331
  37. Panossian, A. and Wagner, H. (2005). Stimulating effect of adaptogens: an overview with particular reference to their efficacy following single dose administration. Phytother. Res. 19, 819-838 https://doi.org/10.1002/ptr.1751
  38. Park, J. S., Woo, M. S., Kim, D. H., Hyun, J. W., Kim, W. K., Lee, J. C. and Kim, H. S. (2007). Anti-inflammatory mechanisms of isoflavone metabolites in lipopolysaccharide-stimulated microglial cells. J. Pharmacol. Exp. Ther. 320, 1237-1245 https://doi.org/10.1124/jpet.106.114322
  39. Pham, C. G., Bubici, C., Zazzeroni, F., Papa, S., Jones, J., Alvarez, K., Jayawardena, S., De Smaele, E., Cong, R., Beaumont, C., Torti, F. M., Torti, S. V. and Franzoso, G. (2004). Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell. 119, 529-542 https://doi.org/10.1016/j.cell.2004.10.017
  40. Possel, H., Noack, H., Augustin, W., Keilhoff, G. and Wolf, G. (1997). 2,7-Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation. FEBS. Lett. 416, 175-178 https://doi.org/10.1016/S0014-5793(97)01197-6
  41. Salvemini, D., Misko, T. P., Masferrer, J. L., Seibert, K., Currie, M. G. and Needleman, P. (1993). Nitric oxide activates cyclooxygenase enzymes. Proc. Natl. Acad. Sci. U S A. 90, 7240-7244 https://doi.org/10.1073/pnas.90.15.7240
  42. Segal, R. A. and Greenberg, M. E. (1996). Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 19, 463-489 https://doi.org/10.1146/annurev.ne.19.030196.002335
  43. Semmler, A., Okulla, T., Sastre, M., Dumitrescu-Ozimek, L. and Heneka, M. T. (2005). Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. J. Chem. Neuroanat. 30, 144-157 https://doi.org/10.1016/j.jchemneu.2005.07.003
  44. Tsai, S. H., Lin-Shiau, S. Y. and Lin, J. K. (1999). Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. Br. J. Pharmacol. 126, 673-680 https://doi.org/10.1038/sj.bjp.0702357
  45. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. and Greenberg, M.E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 270, 1326-1331 https://doi.org/10.1126/science.270.5240.1326
  46. Xue, J. Y., Liu, G. T., Wei, H. L. and Pan, Y. (1992). Antioxidant activity of two dibenzocyclooctene lignans on the aged and ischemic brain in rats. Free. Radic. Biol. Med. 12, 127-135 https://doi.org/10.1016/0891-5849(92)90006-3
  47. Yamada, S., Murawaki, Y. and Kawasaki, H. (1993). Preventive effect of gomisin A, a lignan component of shizandra fruits, on acetaminophen-induced hepatotoxicity in rats. Biochem. Pharmacol. 46, 1081-1085 https://doi.org/10.1016/0006-2952(93)90674-L
  48. Yasukawa, K., Ikeya, Y., Mitsuhashi, H., Iwasaki, M., Aburada, M., Nakagawa, S., Takeuchi, M. and Takido, M. (1992). Gomisin A inhibits tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Oncology. 49, 68-71 https://doi.org/10.1159/000227014
  49. Yong, V. W., Krekoski, C. A., Forsyth, P. A., Bell, R. and Edwards, D. R. (1998). Matrix metalloproteinases and diseases of the CNS. Trends. Neurosci. 21, 75-80 https://doi.org/10.1016/S0166-2236(97)01169-7
  50. Yu, A. E., Hewitt, R. E., Connor, E. W. and Stetler-Stevenson, W. G. (1997). Matrix metalloproteinases. Novel targets for directed cancer therapy. Drugs. Aging. 11, 229-244 https://doi.org/10.2165/00002512-199711030-00006
  51. Zhang, L. and Niu, X. (1991). Effects of schizandrol A on monoamine neurotransmitters in the central nervous system. Zhongguo. Yi. Xue. Ke. Xue. Yuan. Xue. Bao. 13, 13-16
  52. Zhao, P., Waxman, S. G. and Hains, B. C. (2007). Extracellular signal-regulated kinase-regulated microglia-neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury. J. Neurosci. 27, 2357-2368 https://doi.org/10.1523/JNEUROSCI.0138-07.2007

Cited by

  1. Antioxidant activity and hepatoprotective effect of Schizandra chinensis Baill. Extracts containing active components in alcohol-induced HepG2 cells vol.23, pp.5, 2014, https://doi.org/10.1007/s10068-014-0220-3
  2. Changes of Antioxidant Activity and Lignan Contents in Schisandra chinensis by Harvesting Times vol.19, pp.6, 2011, https://doi.org/10.7783/KJMCS.2011.19.6.414
  3. Gomisin N enhances TNF-α-induced apoptosis via inhibition of the NF-κB and EGFR survival pathways vol.350, pp.1-2, 2011, https://doi.org/10.1007/s11010-010-0695-z
  4. Effects of Schisandra chinensis Baillon (Schizandraceae) on lipopolysaccharide induced lung inflammation in mice vol.142, pp.1, 2012, https://doi.org/10.1016/j.jep.2012.04.009
  5. Src-mediated regulation of inflammatory responses by actin polymerization vol.79, pp.3, 2010, https://doi.org/10.1016/j.bcp.2009.09.016
  6. A substituted 3,4-dihydropyrimidinone derivative (compound D22) prevents inflammation mediated neurotoxicity; role in microglial activation in BV-2 cells vol.22, pp.16, 2012, https://doi.org/10.1016/j.bmcl.2012.06.082
  7. Protective Effect of Gomisin N against Endoplasmic Reticulum Stress-Induced Hepatic Steatosis vol.39, pp.5, 2009, https://doi.org/10.1248/bpb.b15-01020