DOI QR코드

DOI QR Code

Pre-clinical QT Risk Assessment in Pharmaceutical Companies - Issues of Current QT Risk Assessment -

  • Takasuna, Kiyoshi (Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd.) ;
  • Katsuyoshi, Chiba (Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd.) ;
  • Manabe, Sunao (Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd.)
  • Published : 2009.01.31

Abstract

Since the Committee for Proprietary Medicinal Products (CPMP) of the European Union issued in 1997 a "points to consider" document for the assessment of the potential for QT interval prolongation by non-cardiovascular agents to predict drug-induced torsades de pointes (TdP), the QT liability has become the critical safety issue in the development of pharmaceuticals. As TdP is usually linked to delayed cardiac repolarization, international guideline (ICH S7B) has advocated the standard repolarization assays such as in vitro IKr (hERG current) and in vivo QT interval, or in vitro APD (as a follow up) as the best biomarkers for predicting the TdP risk. However, the recent increasing evidence suggests that the currently used above biomarkers and/or assays are not fully predictive for TdP, but also does not address potential new druginduced TdP due to the selective disruption of hERG protein trafficking to the cell membrane or VT and/or VF with QT shortening. There is, therefore, an urgent need for other surrogate markers or assays that can predict the proarrhythmic potential of drug candidate. In this review, we provide an ideal pre-clinical strategy to predict the potentials of QT liability and lethal arrhythmia of the drug candidates with recent issues in this field in mind, not at the expense of discarding therapeutically innovative drugs.

Keywords

References

  1. Belardinelli, L., Shryock, J. C., Wu, L. and Song, Y. (2005). Use of preclinical assays to predict risk of drug-induced torsades de pointes. Heart Rhythm. 2, S16-S22 https://doi.org/10.1016/j.hrthm.2004.10.032
  2. Camm, A. J. (2005). Clinical trial design to evaluate the effects of drugs on cardiac repolarization: current state of the art. Heart Rhythm. 2, S23-S29 https://doi.org/10.1016/j.hrthm.2004.09.019
  3. Carlsson, L. (2006). In vitro and in vivo models for testing arrhythmogenesis in drugs. J. Internal. Medicine. 259, 70-80 https://doi.org/10.1111/j.1365-2796.2005.01590.x
  4. Carlsson, L. (2008). The anaesthetised methoxamine-sensitised rabbit model of torsades de pointes Pharmacol. Ther. 119, 160-167 https://doi.org/10.1016/j.pharmthera.2008.04.004
  5. Cavero, I., Mestre, M., Guillon, J. M. and Crumb, W. (2003). Drugs that prolong QT interval as an unwanted effect: Assessing their likelihood of inducing hazardous cardiac dysrhythmias. Expert Opin. Pharmacother. 1, 947-973 https://doi.org/10.1517/14656566.1.5.947
  6. Dumotier, B. M. and Georgieva, A. V. (2007). Preclinical cardio-safety assessment of torsadogenic risk and alternative methods to animal experimentation: the inseparable twins. Cell Biol. Toxicol. 23, 293-302 https://doi.org/10.1007/s10565-006-0882-6
  7. Furuhama, K. (2007). Toxicology assessment of fluoroquinolones: A case study. In Nonclinical Drug Safety Assessment: Practical Considerations for Successful Registration(Sietsema, W. K. and Schwen R., Eds.), pp 571-588. FDA news, Falls Church, USA
  8. Hashimoto, K. (2008). Torsades de pointes liability inter-model comparisons: The experience of the QT PRODACT initiative. Pharmacol. Ther. 119, 195-198 https://doi.org/10.1016/j.pharmthera.2008.03.003
  9. Hanson, L. A., Bass, A. S., Gintant, G., Mittelstadt, S., Rampe, D. and Thomas, K. (2006). ILSI-HESI cardiovascular safety subcommittee initiative: evaluation of three non-clinical models of QT prolongation. J. Pharmacol. Toxicol. Methods. 54, 116-129 https://doi.org/10.1016/j.vascn.2006.05.001
  10. Hoffmann, P. and Warner, B. (2006). Are hERG channel inhibition and QT interval prolongation all there is in drug-induced torsadogenesis? A review of emerging trends. J. Pharmacol. Toxicol. Methods. 53, 87-105 https://doi.org/10.1016/j.vascn.2005.07.003
  11. Liu, T., Brown, B. S., Wu, Y., Antzelevitch, C., Kowey, P. R. and Yan, G. X. (2006). Blinded validation of the isolated arterially perfused rabbit ventricular wedge in preclinical assessment of drug-induced proarrhythmias. Heart Rhythm. 3, 948-956 https://doi.org/10.1016/j.hrthm.2006.04.021
  12. Lu, H. R., Vlaminckx, E., Hermans, A. N., Rohrbacher, J., Van, Ammel. K., Towart. R., Pugsley, M. and Gallacher, D. J. (2008). Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines. Br. J. Pharmacol. 154, 1427-1438 https://doi.org/10.1038/bjp.2008.191
  13. Milberg, P., Eckardt, L., Bruns, H. J., Biertz, J., Ramtin, S., Reinsch, N., Fleischer, D., Kirchhof, P., Fabritz, L., Breithardt, G. and Haverkamp, W. (2002). Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: Fast Phase 3 repolarization prevents early after depolarizations and torsade de pointes J. Pharmacol. Exper. Ther. 303, 218-225 https://doi.org/10.1124/jpet.102.037911
  14. Oros, A., Beekman, J. D. and Vos, M. A. (2008). The canine model with chronic, complete atrio-ventricular block. Pharmacol Ther. 119, 168-178 https://doi.org/10.1016/j.pharmthera.2008.03.006
  15. Pollard, C. E., Valentin, J. P. and Hammond. T. G. (2008). Strategies to reduce the risk of drug-induced QT interval prolongation: a pharmaceutical company perspective. Br. J. Pharmacol. 154, 1538-1543 https://doi.org/10.1038/bjp.2008.203
  16. Redfern, W. S., Carlsson, L., Davis, A. S., Lynch, W. G., MacKenzie, I., Palethorpe, S., Siegl, P. K., Strang, I., Sullivan, A. T., Wallis, R., Camm, A. J. and Hammond, TG. (2003). Relationship between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: Evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58, 32-45 https://doi.org/10.1016/S0008-6363(02)00846-5
  17. Sugiyama, A. (2008) Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodelled hearts. Br. J. Pharmacol. 154, 1528-1537 https://doi.org/10.1038/bjp.2008.240
  18. Tashibu, H., Miyazaki, H., Aoki, K., Akie, Y. and Yamamoto, K. (2005). QT PRODACT: in vivo QT assay in anesthetized dog for detecting the potential for QT interval prolongation by human pharmaceuticals. J. Pharmacol. Sci. 99, 473-486 https://doi.org/10.1254/jphs.QT-A3
  19. Thomsen M. B., Matz, J., Volders P. G. A. and Vos M. A. (2006). Assessing the proarrhythmic potentials of drugs: Current status of models and surrogate parameters of torsades de pointes arrhythmia. Pharmacol. Ther. 112, 150-170 https://doi.org/10.1016/j.pharmthera.2005.04.009
  20. Toyoshima, S., Kanno, A., Kitayama, T., Sekiya, K., Nakai, K., Haruna, M., Mino, T., Miyazaki, H., Yano, K. and Yamamoto, K. (2005). QT PRODACT: in vivo QT assay in the conscious dog for assessing the potential for QT interval prolongation by human pharmaceuticals. J. Pharmacol. Sci. 99, 459-471 https://doi.org/10.1254/jphs.QT-A2
  21. Valentin, J. P., Hoffmann, P., De Clerck, F., Hammond, T. G. and Hondeghem, L. (2004). Review of the predictive value of the Langendorff heart model (Screenit system) in assessing the proarrhythmic potential of drugs. J. Pharmacol. Toxicol. Methods. 49, 171-181 https://doi.org/10.1016/j.vascn.2004.03.008
  22. Vik, T., Pollard, C. and Sager, P. (2008). Early clinical development: Evaluation of drug-induced torsades de pointes risk. Pharmacol. Ther. 119, 210-214 https://doi.org/10.1016/j.pharmthera.2008.05.006
  23. Webster, R., Leishman, D. and Walker, D. (2002). Toward a drug concentration effect relationship for QT prolongation and torsades de pointes. Curr. Opin. Drug Discov. Devel. 5, 116-126
  24. Yao, X., Anderson, D. L., Ross, S. A., Lang, D. G., Desai, B. Z., Cooper, D. C., Wheelan, P., McIntyre, M. S., Bergquist, M. L., MacKenzie, K. I., Becherer, J. D. and Hashim, M. A. (2008). Predicting QT prolongation in humans during early drug development using hERG inhibition and an anaesthetized guinea-pig model. Br. J. Pharmacol. 154, 1446-1456 https://doi.org/10.1038/bjp.2008.267

Cited by

  1. Quasi-In vivoHeart Electrocardiogram Measurement of ST Period Using Convolution of Cell Network Extracellular Field Potential Propagation in Lined-Up Cardiomyocyte Cell-Network Circuit vol.50, pp.7, 2011, https://doi.org/10.1143/JJAP.50.070213
  2. Quasi-In vivoHeart Electrocardiogram Measurement of ST Period Using Convolution of Cell Network Extracellular Field Potential Propagation in Lined-Up Cardiomyocyte Cell-Network Circuit vol.50, pp.7R, 2011, https://doi.org/10.7567/JJAP.50.070213
  3. Quantitative Evaluation of Closed-Loop-Shaped Cardiomyocyte Network by Using Ring-Shaped Electrode vol.51, pp.6S, 2012, https://doi.org/10.7567/JJAP.51.06FK06
  4. CSAHi study: Evaluation of multi-electrode array in combination with human iPS cell-derived cardiomyocytes to predict drug-induced QT prolongation and arrhythmia — Effects of 7 reference compounds at 10 facilities vol.78, 2016, https://doi.org/10.1016/j.vascn.2015.12.002
  5. Comprehensive in vitro cardiac safety assessment using human stem cell technology: Overview of CSAHi HEART initiative vol.83, 2017, https://doi.org/10.1016/j.vascn.2016.09.004
  6. CSAHi study: Validation of multi-electrode array systems (MEA60/2100) for prediction of drug-induced proarrhythmia using human iPS cell-derived cardiomyocytes -assessment of inter-facility and cells lot-to-lot-variability- vol.77, 2016, https://doi.org/10.1016/j.yrtph.2016.02.007
  7. CSAHi study: Detection of drug-induced ion channel/receptor responses, QT prolongation, and arrhythmia using multi-electrode arrays in combination with human induced pluripotent stem cell-derived cardiomyocytes vol.85, 2017, https://doi.org/10.1016/j.vascn.2017.02.001
  8. Clinicopathological Aspect of Dysglycemia in Naive and Diabetic Rats induced by the Fluoroquinolone Antibacterial Gatifloxacin vol.72, pp.5, 2010, https://doi.org/10.1292/jvms.09-0465
  9. A Risk Assessment of Human Ether-a-Go-Go-Related Gene Potassium Channel Inhibition by Using Lipophilicity and Basicity for Drug Discovery vol.59, pp.9, 2009, https://doi.org/10.1248/cpb.59.1110
  10. Comprehensive Cardiac Safety Assessment using hiPS-cardiomyocytes (Consortium for Safety Assessment using Human iPS Cells: CSAHi) vol.21, pp.9, 2009, https://doi.org/10.2174/1389201020666191024172425