DOI QR코드

DOI QR Code

Changes in the Microbiological Characteristics of Oat Extract by Lactic-bacterial Fermentation

귀리추출물의 젖산발효에 의한 미생물학적 특성 변화

  • Lee, Chan (Dept. of Food and Biotechnology, Hanseo University)
  • 이찬 (한서대학교 식품생물공학과)
  • Published : 2009.12.31

Abstract

The effect of fermentation with mixed cultures of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus on the microbiological characteristics of oat extract was investigated. Changes in pH, titratable acidity and viable cell populations indicated that growth was better in mixed cultures of L. delbrueckii subsp. bulgaricus and S. salivarius subsp. thermophilus. Growth of S. salivarius subsp. thermophilus in oat extract was more rapid than growth of L. delbrueckii subsp. bulgaricus. Cooperative interaction between two cultures during fermentation of oat extract as in yogurt from cow's milk was observed, but the intensity was relatively weak.

귀리추출물에 L. delbrueckii subsp. bulgaricus 또는 S. salivarius subsp. thermophilus를 단일균주로 발효한 것에 비하여 L. delbrueckii subsp. bulgaricus와 S. salivarius subsp. thermophilus를 혼합하여 발효하는 경우에는 미생물균수와 산 생성이 증가하였다. pH의 변화에서도 S. salivarius subsp. thermophilus의 경우가 L. delbrueckii subsp. bulgaricus보다 더 낮은 pH를 나타내었으며, L. delbrueckii subsp. bulgaricus와 S. salivarius subsp. thermophilus를 혼합하여 발효하는 경우에는 pH가 더 빠르게 감소하였다. 이러한 결과는 우유를 원료로 한 요구르트의 경우처럼 귀리추출물의 젖산발효에서도 L. delbrueckii subsp. bulgaricus와 S. salivarius subsp. thermophilus의 두 균주 간에 생육촉진 현상이 있음을 의미하는 결과로 해석될 수 있는데 그 정도는 매우 적었다. 본 실험에서 S. salivarius subsp. thermophilus의 미생물균수와 산 생성이 더 증가한 반면 pH는 더 낮은 이유는 L. delbrueckii subsp. bulgaricus에 비하여 귀리추출물에 더 잘 적응하였기 때문이라고 생각된다.

Keywords

References

  1. Roland N, Rabot S, Nugon-Baudon L. 1996. Modulation of the biological effects of glucosinolates by inulin and oat fibre in gnotobiotic rats inoculated with a human whole faecal flora. Food Chem Toxicol 34: 671-677 https://doi.org/10.1016/0278-6915(96)00038-5
  2. Yokoyama WH, Hudson CA, Knuckles BE, Chiu MCM, Sayre RN, Turnlund JR, Schneeman BO. 1997. Effect of barley beta-glucan in durum wheat pasta on human glycemic response. Cereal Chem 74: 293-296 https://doi.org/10.1094/CCHEM.1997.74.3.293
  3. Stephen AM, Dahl WJ, Johns DM, Englyst HN. 1997. Effect of oat hull fiber on human colonic function and serum lipids. Cereal Chem 74: 379-383 https://doi.org/10.1094/CCHEM.1997.74.4.379
  4. Au PM, Fields ML. 1981. Nutritive quality of fermented sorghum. J Food Sci 46: 652-654 https://doi.org/10.1111/j.1365-2621.1981.tb04937.x
  5. Schaffner DW, Beuchat LR. 1986. Fermentation of aqueous plant seed extracts by lactic acid bacteria. Appl Environ Microbiol 51: 1072-1076
  6. Schaffner DW, Beuchat LR. 1986. Functional properties of freeze-dried powders of unfermented and fermented aqueous extracts of legume seeds. J Food Sci 51: 629-633 https://doi.org/10.1111/j.1365-2621.1986.tb13896.x
  7. Schmidt RH, Sistrunk CP, Richter RL, Cornell JA. 1980. Heat treatment and storage effects on texture characteristics of milk and yogurt systems fortified with oilseed proteins. J Food Sci 45: 471-474 https://doi.org/10.1111/j.1365-2621.1980.tb04078.x
  8. Steinkraus KH. 1983. Lactic acid fermentation in the production of foods from vegetables, cereals and legumes. Antonie van Leeuvenhoek 49: 337-348 https://doi.org/10.1007/BF00399508
  9. Mok CK, Han JS, Kim YJ, Kim NS, Kwon DY, Nam YJ. 1991. Risogurt, a mixture of lactic acid fermented rice and soybean protein: development and properties. Korean J Food Sci Technol 23: 745-749
  10. Jang SW. 2008. Changes of quality characteristics of low- molecular soymilk according to hydrolysis time. J Korean Soc Food Sci Nutr 37: 1287-1293 https://doi.org/10.3746/jkfn.2008.37.10.1287
  11. Angles AG, Marth EH. 1971a. Growth and activity of lactic acid bacteria in soy milk. I. Growth and acid production. J Milk Food Technol 34: 30-36 https://doi.org/10.4315/0022-2747-34.1.30
  12. Angles AG, Marth EH. 1971b. Growth and activity of lactic acid bacteria in soy milk. II. Heat treatment of soy milk and culture activity. J Milk Food Technol 34: 63-68 https://doi.org/10.4315/0022-2747-34.2.63
  13. Angles AG, Marth EH. 1971c. Growth and activity of lactic acid bacteria in soy milk. III. Lipolytic activity. J Milk Food Technol 34: 69-75 https://doi.org/10.4315/0022-2747-34.2.69
  14. Angles AG, Marth EH. 1971d. Growth and activity of lactic acid bacteria in soy milk. IV. Proteolytic activity. J Milk Food Technol 34: 123-128
  15. Mital BK, Steinkraus KH, Naylor HB. 1974. Growth of lactic acid bacteria in soy milks. J Food Sci 39: 1018-1022 https://doi.org/10.1111/j.1365-2621.1974.tb07300.x
  16. Kanda H, Wang HL, Hesseltine CW, Warner K. 1976. Yoghurt production by Lactobacillus fermentation of soybean milk. Process Biochem 11: 23-25
  17. Mital BK, Steinkraus KH. 1979. Fermentation of soy milk by lactic acid bacteria. A review. J Food Prot 42: 895-899 https://doi.org/10.4315/0362-028X-42.11.895
  18. Pinthong R, Macrae R, Rothwell J. 1980a. The development of a soya-based yogurt. I. Acid production by lactic acid bacteria. J Food Technol 15: 647-652 https://doi.org/10.1111/j.1365-2621.1980.tb00985.x
  19. Pinthong R, Macrae R, Rothwell J. 1980b. The development of a soya-based yogurt. II. Sensory evaluation and analysis of volatiles. J Food Technol 15: 653-660 https://doi.org/10.1111/j.1365-2621.1980.tb00986.x
  20. Wang HL, Kraidej L, Hesseltine CW. 1974. Lactic acid fermentation of soybean milk. J Milk Food Technol 37: 71-73 https://doi.org/10.4315/0022-2747-37.2.71
  21. Mital BK, Steinkraus KH. 1976. Flavor acceptability of unfermented and lactic fermented soy milks. J Milk Food Technol 39: 342-344 https://doi.org/10.4315/0022-2747-39.5.342
  22. Mital BK, Shallenberger RS, Steinkraus KH. 1973. $\alpha$- Galactosidase activity of Lactobacilli. Appl Microbiol 26: 783-788
  23. Mital BK, Steinkraus KH. 1975. Utilization of oligosaccharides by lactic acid bacteria during fermentation of soy milk. J Food Sci 40: 114-118 https://doi.org/10.1111/j.1365-2621.1975.tb03749.x
  24. Lee C. 2001. The effect of lactic-fermentation on the quality of peanut milk. J Korean Soc Food Sci Nutr 30: 439-443
  25. Lee SY, Vedamuthu ER, Washam CJ, Reinbold GW. 1974. An agar medium for the differential enumeration of yogurt starter bacteria. J Milk Food Technol 37: 272-276 https://doi.org/10.4315/0022-2747-37.5.272
  26. Galesloot TE, Hassing F, Veringa HA. 1968. Symbiosis in yogurt (I). Stimulation of Lactobacillus bulgaricus by a factor produced Streptococcus thermophilus. Neth Milk Dairy J 22: 50-63
  27. Veringa HA, Galesloot TE, Davelaar H. 1968. Symbiosis in yogurt (II). Isolation and identification of a growth factor for Lactobacillus bulgaricus produced by Streptococcus thermophilus. Neth Milk Dairy J 22: 114-120
  28. Moon NJ, Reinbold GW. 1976. Commensalism and competition in mixed cultures of Lactobacillus bulgaricus and Streptococcus thermophilus. J Milk Food Technol 38: 337-341
  29. Rasic J, Kurmann JA. 1978. Yogurt scientific grounds, technology, manufacture and preparation. Technical Dairy Publishing House, Copenhagen, Denmark. Vol 1, p 39

Cited by

  1. Nutritional Components and Physicochemical Properties of Hulled and Naked Oat Flours according to Particle Sizes vol.45, pp.9, 2016, https://doi.org/10.3746/jkfn.2016.45.9.1293