DOI QR코드

DOI QR Code

구절초 꽃 추출물의 Nitric Oxide 생성과 Inducible Nitric Oxide Synthase 발현 억제 효과

Suppressive Effects of Chrysanthemum zawadskii var. latilobum Flower Extracts on Nitric Oxide Production and Inducible Nitric Oxide Synthase Expression

  • Han, Ji-Young (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Kim, Young-Hwa (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Sung, Jee-Hye (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Um, Yu-Rry (Dept. of Industrial Plant Science & Technology, Chungbuk National University) ;
  • Lee, Yi (Dept. of Industrial Plant Science & Technology, Chungbuk National University) ;
  • Lee, Jun-Soo (Dept. of Food Science and Technology, Chungbuk National University)
  • 발행 : 2009.12.31

초록

본 연구에서는 구절초의 항염증 효과를 탐색하기 위해 NO의 함량과 iNOS의 발현 및 PGE2와 COX-2의 발현을 LPS로 염증을 유도한 RAW 264.7 macrophage cell을 이용하여 실험하였다. 연구 결과 구절초 꽃 추출물은 NO 함량을 농도 의존적으로 감소시키는 경향을 나타냈으며 유의한 차이를 보였다. 또한 세포독성은 꽃 추출물(5~50 μg/mL)은 최고 농도인 50 μg/mL에서 약 20%의 독성을 나타냈으며 그 이하의 농도에서는 독성을 나타내지 않았다. NO 생성의 억제는 iNOS의 단백질과 mRNA의 발현을 농도 의존적으로 저해하였으며 유의성 있는 차이를 나타내었다. 이 결과로 구절초 꽃 추출물이 전사단계에서 저해 활성을 나타낸다는 것을 보여주었다. 그러나 PGE2와 COX-2의 발현 억제 효과는 나타나지 않았으며, 이 결과 구절초 꽃 추출물에 의한 COX-2 단백질의 발현 억제와 PGE2 생성 억제는 유의성이 없는 것으로 나타났다. 본 연구 결과, 구절초 추출물은 염증을 일으키는 중요 인자인 NO를 저해하였고, iNOS의 발현, iNOS의 mRNA 발현 등 항염증에 우수한 효과를 보였으며, 항염증 연구의 기초 자료로 활용될 것으로 예상된다. 또한 추후 산업적 응용도 가능하므로 지속적인 연구가 진행되어야 할 것으로 사료된다.

In this study, we investigated the effect of C. zawadskii extract on nitric oxide (NO) production, prostaglandin E2 (PGE2) production, protein and mRNA expression of inducible nitric oxide synthase (iNOS) in LPS-induced RAW 264.7 macrophage cells. C. zawadskii extract (5~50 μg/mL) significantly inhibited LPS-induced NO production in a concentration-dependent manner ranging from 23.3% to 100%. Consistent with the inhibitory effect on NO production, C. zawadskii extract inhibited the protein expression and mRNA expression of iNOS. Although flower extracts of C. zawadskii was not effective on the expression of PGE2 and COX-2, flower extracts of C. zawadskii, however, showed a strong anti-inflammatory activity through inhibition of NO production and iNOS expression. The present results suggest that C. zawadskii extract has an inhibitory effect on NO production, and thus can be used as an anti-inflammatory agent.

키워드

참고문헌

  1. Sarkar D, Fisher PB. 2006. Molecular mechanisms of aging-associated inflammation. Cancer Lett 236: 13-23 https://doi.org/10.1016/j.canlet.2005.04.009
  2. Fierro IM, Serhan CN. 2001. Mechanisms in anti-inflammation and resolution: the role of lipoxins and aspirin- triggered lipoxins. Braz J Med Biol Res 34: 555-566 https://doi.org/10.1590/S0100-879X2001000500002
  3. Park JS, Lee EJ, Lee JC, Kim WK, Kim HS. 2007. Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells: involvement of NF-kappaB and ERK signaling pathways. Int Immunopharmacol 7: 70-77 https://doi.org/10.1016/j.intimp.2006.08.015
  4. Bredt DS, Snyder SH. 1994. Transient nitric oxide synthase neurons in embryonic cerebral cortical plate, sensory ganglia, and olfactory epithelium. Neuron 13: 301-313 https://doi.org/10.1016/0896-6273(94)90348-4
  5. Jaffrey SR, Snyder SH. 1995. Nitric oxide: a neural messenger. Annu Rev Cell Dev Biol 11: 417-440 https://doi.org/10.1146/annurev.cb.11.110195.002221
  6. Tsao LT, Lee CY, Huang LJ, Kuo SC, Wang JP. 2002. Inhibition of lipopolysaccharide stimulated nitric oxide production in RAW 264.7 macrophages by a synthetic carbazole, LCY-2-CHO. Biochem Pharmacol 63: 1961-1968 https://doi.org/10.1016/S0006-2952(02)01023-7
  7. Vodovotz Y, Russell D, Xie QW, Bogdan C, Nathan C. 1995. Vesicle membrane association of nitric oxide synthase in primary mouse macrophage. J Immunol 154: 2914-2925
  8. Lowenstein CJ, Alley EW, Raval P, Snowman AM, Synder SH, Russell SW, Murphy WJ. 1993. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci USA 90: 9730-9734 https://doi.org/10.1073/pnas.90.20.9730
  9. Smith WL, DeWitt DL, Garavito RM. 2000. Cyclooxygenase: structures, cellular, and molecular biology. Annu Rev Biochem 69: 145-182 https://doi.org/10.1146/annurev.biochem.69.1.145
  10. Chun KS, Surh YJ. 2004. Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol 15: 1089-1100 https://doi.org/10.1016/j.bcp.2004.05.031
  11. Cheon YP, Mohammad LM, Park CH, Hong JH, Lee GD, Song JC, Kim KS. 2009. Bulnesia sarmienti aqueous extract inhibits inflammation in LPS-stimulated RAW 264.7 cells. J Life Sci 19: 479-485 https://doi.org/10.5352/JLS.2009.19.4.479
  12. 이창복. 1982. 대한식물도감. 향문사, 서울. p 754
  13. 육창수. 1997. 생약도감. 도서출판 경원, 서울. p 528
  14. 임록재. 1998. 조선약용식물지. 농업출판사, 서울. p 186
  15. 원도희, 하광원. 1997. 약용식물도감. 식품의약품안전본부. p 72
  16. Kim YY, Lee SY, Yim DS. 2001. Biological activities of linarin from Chrysanthemum zawadskii var. latilobum. Yakhak Hoeji 45: 604-610
  17. Bae IK, Min HY, Han AR, Seo EK, Lee SK. 2005. Suppression of lipopolysaccharide-induced expression of inducible nitric oxide synthase by brazilin in RAW 264.7 macrophage cells. Eur J Pharmacol 513: 237-242 https://doi.org/10.1016/j.ejphar.2005.03.011
  18. Kim JH, Kim DH, Beak SH, Lee HJ, Kim MR, Kwon HJ, Lee CH. 2006. Rengyolone inhibits inducible nitric oxide synthase expression and nitric oxide production by down- regulation of NF-κB and p38 MAP kinase activity in LPS-stimulated RAW 264.7 cells. Biochem Pharmacol 71: 1198-1205 https://doi.org/10.1016/j.bcp.2005.12.031
  19. Hseu YC, Wu FY, Wu JJ, Chen JY, Chang WH, Lu FJ, Lai YC, Yang HL. 2005. Anti-inflammatory potential of Antrodia camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-κB pathway. Int Immunopharmacol 5: 1914-1925 https://doi.org/10.1016/j.intimp.2005.06.013
  20. Hirafuji M, Tsunoda M, Machida T, Hamaue N, Endo T, Miyamoto A, Minami M. 2002. Reduced expressions of inducible nitric oxide synthase and cyclooxygenase-2 in smooth muscle cells of stroke-prone spontaneously hypertensive rats. Life Sci 70: 917-926 https://doi.org/10.1016/S0024-3205(01)01464-3
  21. Jung KH, Ha E, Kim MJ, Won HJ, Zheng LT, Kim HK, Hong SJ, Chung JH, Yim SV. 2007. Suppressive effects of nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression by Citrus reticulata extract in RAW 264.6 macrophage cells. Food Chem Toxicol 45: 1545-1550 https://doi.org/10.1016/j.fct.2007.02.017
  22. Lee MH, Lee JM, Jun SH, Lee SH, Kim NW, Lee JH, Ko NY, Mun SH, Kim BK, Lim BO, Choi DK, Choi WS. 2007. The anti-inflammatory effects of Pyrolae herva extract through the inhibition of the expression of inducible nitric oxide synthase (iNOS) and NO production. J Ethnopharmacol 112: 49-54 https://doi.org/10.1016/j.jep.2007.01.036
  23. Ukiya M, Akihisa T, Yasukawa K, Kasahara Y, Kimura Y, Koike K, Nikaido Y, Takido M. 2001. Constituents of Compositae plants. 2. Triterpene dio, triol, and their 3-O-fatty acid esters from edible Chrysanthemum flower extract and their anti-inflammatory effects. J Agric Food Chem 49: 3187-3197 https://doi.org/10.1021/jf010164e
  24. Cheon MS, Yoon T, Lee DY, Choi G, Moon BC, Lee AY, Choo BK, Kim HK. 2009. Chrysanthemum indicum Linne extract inhibits the inflammatory response by suppressing NK-$\kappa$B and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophages. J Ethnopharmacol 112: 473-477
  25. Pacheco-Sanchez M, Boutin Y, Angers P, Gosselin A, Tweddell RJ. 2007. Inhibitory effects of CDP, a polysaccharide extracted from the mushroom Collybia dryophila, on nitric oxide synthase expression and nitric oxide production in macrophage. Eur J Pharmacol 555: 61-66 https://doi.org/10.1016/j.ejphar.2006.10.015
  26. Garcia X, Stein F. 2006. Nitric oxide. Semin Pediatr Infect Dis 17: 55-57 https://doi.org/10.1053/j.spid.2006.04.002
  27. Lee SH, Lee SY, Son DJ, Lee H, Yoo HS, Song S, Oh KW, Han DC, Kwon BM, Hong JT. 2005. Inhibitory effect of 2'-hydrozycinnamaldehyde on nitric oxide production through inhibition of NF-κB activation in RAW 264.7 cells. Biochem Pharmacol 69: 791-799 https://doi.org/10.1016/j.bcp.2004.11.013
  28. Kang OH, Lee GH, Choi HJ, Park PS, Chae HS, Jeong SI, Kim YC, Sohn DH, Park H, Lee JH, Kwon DY. 2007. Ethyl acetate extract from Angelica Dahuricae Radix inhibits lipopolysaccharide-induced production of nitric oxide, prostaglandin E2 and tumor necrosis factor-$\alpha$ via mitogen-activated protein kinase and nuclear factor-κB in macrophages. Pharmacol Res 55: 263-270 https://doi.org/10.1016/j.phrs.2006.12.001
  29. Jang SI, Jun CS, Kwak KC, Bea MS, Lee JH, Kim KY, Yun YG, Chai GY. 2006. Evaluation of Korea phytomedicinal plat on inhibition of prostaglandin E2 (PGE2) production and cyclooxygenase-2 (COX-2) in LPS stimulated U937 cells. Korean J Ori Physio Path 20: 455-459
  30. Lee HJ, Son DJ, Kang MH, Lee BC, Hong JT. 2006. Effects of lignan compound of sesame on LPS-induced nitric oxide generation in murine macrophage RAW 264.7 cells. J Soc Cosmet Sci Korea 32: 173-180

피인용 문헌

  1. Anti-Inflammatory Effect of Erigeron annuus L. Flower Extract through Heme Oxygenase-1 Induction in RAW264.7 Macrophages vol.40, pp.11, 2011, https://doi.org/10.3746/jkfn.2011.40.11.1507
  2. Anti-inflammatory effects of flavonoids in Korean Chrysanthemum species via suppression of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-induced RAW 264.7 macrophages vol.24, pp.3, 2015, https://doi.org/10.1007/s10068-015-0125-9
  3. Anti-inflammatory activity of Chrysanthemum zawadskii var. latilobum leaf extract through haem oxygenase-1 induction vol.4, pp.2, 2012, https://doi.org/10.1016/j.jff.2012.02.007
  4. Comparison of Linarin Content and Biological Activity in Ethanol Extraction of Chrysanthemum zawadskii vol.45, pp.10, 2016, https://doi.org/10.3746/jkfn.2016.45.10.1414
  5. Anti-Inflammatory Effects of Extracts from Ligustrum ovalifolium H. Leaves on RAW264.7 Macrophages vol.41, pp.9, 2012, https://doi.org/10.3746/jkfn.2012.41.9.1205
  6. Anti-Inflammatory Activities of Extracts from Fermented Taraxacum platycarpum D. Leaves Using Hericium erinaceum Mycelia vol.45, pp.1, 2016, https://doi.org/10.3746/jkfn.2016.45.1.020
  7. Review on Anti-Cancer and Anti-Imflammatory Activity from Rubus coreanus Miquel vol.21, pp.5, 2015, https://doi.org/10.20878/cshr.2015.21.5.015
  8. 구절초 꽃 추출물의 항산화, 항염증 및 멜라닌 생성 억제 효과에 관한 연구 vol.33, pp.4, 2016, https://doi.org/10.12925/jkocs.2016.33.4.762